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Abstract

The overarching theme of the present dissertation is the geometry of compact G2-
manifolds and their moduli spaces. This thesis can be roughly divided into two
parts: the first one is concerned with the spectral properties of twisted connected
sums, whilst the second one studies the geometry of G2-moduli spaces.

In the first part, we prove a deformation theorem allowing to construct torsion-
free G2-structures with Ck-estimates (for any k ≥ 1), and use it to deduce improved
estimates for the twisted connected sum construction. We then study the map-
ping properties of differential operators in ‘neck-stretching’ problems, where two
asymptotically cylindrical manifolds are glued to form a family of compact man-
ifolds containing a cylindrical neck region whose length is stretched to infinity.
In this limit, we construct approximate Fredholm inverses for a large class of
‘adapted’ elliptic operators, with good control on the growth of their norm. Our
results are then refined in the case of the Laplacian operator, and we derive a
precise description of the asymptotic behaviour of its lower spectrum. Specified
to twisted connected sum G2-manifolds, our results give mathematical support for
the so-called swampland distance conjecture in physics.

The second part of this dissertation is concerned with the geometry of the mod-
uli space M of torsion-free G2-structures on a compact G2-manifold M , endowed
with the Riemannian metric G induced by the volume-normalised L2-inner prod-
uct. When the first Betti number of M vanishes, this metric has the remarkable
property of being Hessian and admits a global potential F . Using this observation,
we derive a formula for the energy (the integral of the squared velocity) of a path
in M . This allows us to give sufficient geometric and topological conditions for
a path of torsion-free G2-structures on M to have finite energy and length in the
moduli space. By considering paths that degenerate to a singular limit, we deduce
that G2-moduli spaces may be incomplete: indeed we show that G2-manifolds con-
structed by the generalised Kummer construction, by resolution of isolated conical
singularities or by the Joyce–Karigiannis construction all have incomplete moduli
spaces.

In the final chapters, we study the local geometry of M and give an alternative
description of the metric G through the introduction of a new notion of period
map for G2-manifolds, mimicking the classical notion of period map introduced by
Griffiths for Kähler manifolds. More specifically, we show using Hodge theory that
there is a natural immersion Φ : M → D of the moduli space into a homogeneous
space D diffeomorphic to GL(n + 1)/({±1} × O(n)), where n + 1 = b3(M), in
such a way that G coincides with the restriction of a (degenerate) homogeneous
quadratic form defined on D. Motivated by the question of understanding the
curvature of G , we also compute the derivatives of the potential function F up to
order 4 and relate our formulas to the second fundamental form of Φ(M ) ⊂ D.
In particular, we deduce that the map Φ is a totally geodesic immersion and G
is locally symmetric when M = T 7/Γ or M = (T 3 × K3)/Γ. Finally, we use the
theory of exterior differential systems to give some complements on the properties
of the map Φ and relate it to the more classical notion of period map for G2-
manifolds, as a Lagrangian immersion of M into H3(M) ⊕H4(M).
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Introduction

Historical perspective and motivation

Riemannian holonomy groups. One of the cornerstones of modern geome-
try is the concept of holonomy, for the holonomy group of a Riemannian mani-
fold detects the presence of additional geometric structures. For non-symmetric
spaces, the classification of the possible irreducible holonomy groups was carried
out by Berger in 1955 [11], with a later amendment by Aleeksevkii [5]. Besides
generic Riemannian metrics (with holonomy SO(n)) and Kähler metrics (U(n)),
this classification contains five special cases: three infinite families corresponding
to Ricci-flat Kähler/Calabi–Yau (SU(n)), hyperkähler (Sp(n)) and quaternionic-
kähler (Sp(1). Sp(n)) metrics; and the two exceptional Lie groups G2 ⊂ SO(7) –
which will be the main focus of this thesis – and Spin(7) ⊂ SO(8).

On the one hand, the study of Calabi–Yau and hyperkähler metrics lies at
the intersection of Riemannian, complex and algebraic geometry, and since Yau’s
solution of the Calabi conjecture in 1978 [123] giving a necessary and sufficient
condition for the existence of such metrics on a compact Kähler manifold the
connections between these fields have been exploited to yield a very rich theory.
In addition, quaternionic-kähler metrics can also be related to complex geometry
using twistor methods.

On the other hand, the study of metrics with exceptional holonomy is only
amenable to differential-geometric techniques and would turn out to be more dif-
ficult. The identification of the parallel tensors associated with the exceptional
holonomy groups goes back to Bonan [14] in 1966, who also proved that metrics
with holonomy G2 or Spin(7) are automatically Ricci-flat. But it took another
two decades before the first construction of metrics with exceptional holonomy
due to Bryant in the local setting [16], shortly before the first complete examples
were exhibited by Bryant and Salamon using cohomogeneity one techniques [19].
The compact case required the introduction of completely different methods, and
the first examples are due to Joyce [63, 64, 65] who developed a general gluing-
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perturbation framework in order to resolve the singularities of certain flat G2- or
Spin(7)-orbifolds.

Over the past three decades, these construction techniques have been extended
and refined, but the fundamental principles on which they rely remain unchanged.
In the noncompact setting, we now know of a number of complete exceptional
holonomy manifolds with various asymptotic behaviours (due to Foscolo–Haskins–
Nordström for G2 [42, 43] and more recently Cavalleri for Spin(7) [22]), which all
rely on dimensional reduction methods (cohomogeneity one or higher). In the
compact case, several new constructions of G2-manifolds have been elaborated:
the twisted connected sum, initially due to Kovalev [80] and then improved by
Corti–Haskins–Nordström–Pacini [29, 30] and extended by Crowley and Nord-
ström [34, 97]; and other resolution methods due to Karigiannis [72] and Joyce–
Karigiannis [68], although in these cases it remains a challenge to find appropriate
building blocks. All of these constructions rely on Joyce’s deformation theorems
[66, Ch. 11] and produce compact exceptional holonomy manifolds close to a de-
generate limit. Contrary to the Calabi–Yau case, we do not know which compact
manifolds admit metrics with holonomy G2 or Spin(7): if certain necessary topo-
logical conditions are known, they are expected to be far from sufficient. More
generally, our understanding of exceptional geometry so far mostly relies on spe-
cific constructions, and there is not a well-established theory comparable to what
is available for the study of special metrics in complex geometry.

But despite these differences, there are deep connections between Calabi–Yau,
hyperkähler and exceptional geometries [37]. This is manifest in the sequence of
inclusions of holonomy groups Sp(1) = SU(2) ⊂ SU(3) ⊂ G2 ⊂ Spin(7), which
implies that the different types of geometries can be related through dimensional
reduction. For this reason, metrics with holonomy SU(2) or SU(3) often arise as
building blocks in the construction of exceptional holonomy metrics, and under-
standing them remains a central topic in exceptional geometry. In addition, there
is an expectation that certain phenomena arising in Calabi–Yau geometry should
have counterparts in G2 and Spin(7)-geometry. This general idea has been adapted
in a variety of ways and is at the origin of a lot of research in the field. Besides
the geometrical intuition, it is partly motivated by the fundamental role played by
special holonomy manifolds for quantum gravity theories in physics, especially for
Calabi–Yau and G2-manifolds in string and M-theory.

Special holonomy and quantum gravity theories. From a historical per-
spective, the inception of string theory took place in the 1960s as a candidate
theory of strong interactions, in an attempt to account for the growing number
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of particles that were regularly discovered in experiments at the time. As such it
was undermined by several problems, among which the presence of a massless spin
two particle in the spectrum of the closed string which did not correspond to any
known particle. With the development of quantum chromodynamics in the late
1960s, string theory was discarded as a possible description of strong interactions
but soon became a candidate theory for quantum gravity, interpreting the mass-
less spin two particle as the graviton [104] – that is, the particle mediating the
gravitational interaction.

The basic idea of string theory is to replace point-like particles by small ‘strings’,
which sweep out 2-dimensional surfaces by moving through a D-dimensional space-
time. Despite the fact that it naturally contains the graviton, string theory un-
fortunately fails to reproduce the basic observation that space-time has dimension
4. Indeed, bosonic string theory is only consistent in a space-time of dimension
D = 26. With the addition of fermions, the critical dimension can be brought
down to D = 10, which is arguably better than 26 but not quite as good as 4.

To solve this conundrum, physicists introduced the idea of ‘compactification’.
That is, one assumes that the ambient space-time is a Riemannian product R3,1 ×
MD−4, where MD−4 is a compact Riemannian manifold which should be ‘very
small’ compared with the length scale that can be reached by experiment. Con-
sistency conditions require M to be Ricci-flat and to admit parallel spinors, and
hence in string theory M6 must be a Calabi–Yau threefold (D = 10). During the
1990s, Witten also made the conjecture that there should exist an 11-dimensional
so-called M-theory (whose precise formulation is yet to be found) unifying the
different types of string theories through various limits [122]. In this theory, the
internal manifold M7 must be a G2-manifold.

Even though in quantum gravity theories the internal manifold cannot be di-
rectly detected, the idea is that its geometry and topology should govern the low-
energy physics in four dimensions. One instance of this principle is the Kaluza–
Klein reduction, wherein the fields in the D-dimensional action can be decomposed
in a Hilbert basis and integrated out along M , thus obtaining a countable family
of physical modes on R3,1. For this reason, the eigenvalues of geometric operators
such as the Laplacian acting on differential forms on M have the physical inter-
pretation of a mass spectrum1. For this prescription to be realistic, one usually
only keeps the massless modes2 to have only a finite number of particles, the other
ones being deemed too heavy to be observed at low energies.
1More accurately, in the case of the Laplacian the eigenvalues correspond to squared masses.
2According to the Standard Model of particle physics, particles acquire a mass through the Higgs
mechanism, but their ‘bare mass’ (the fundamental mass parameter in the Lagrangian) is zero.
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The swampland programme. Due to the large number of topological types of
known Calabi–Yau and G2 manifolds, there is a huge number of possible back-
ground vacua for string and M-theory, leading to an equally huge number of pos-
sible low-energy field theories in 4 dimensions. They form what is known as the
(string or M-theory) landscape. This raises a question as to whether any quantum
field theory in 4 dimensions can be obtained from string/M-theory (or any other
quantum gravity theory) by choosing the right internal manifold, in which case
these theories would not have any predictive power for low-energy physics.

It is now widely believed by physicists that this should not be the case, and
that in some sense most field theories should not occur as the low energy limit
of a theory of quantum gravity: such field theories have been collectively termed
the swampland. In order to give more substance to this idea, one would need to
give precise criteria in order to distinguish the theories forming the landscape from
those belonging to the swampland. This idea was originally formulated by Vafa in
2005 [115] and is at the origin of what is called the swampland programme.

Since then, this programme has received a lot of attention in the physics com-
munity and many criteria have been proposed, backed by arguments with various
levels of mathematical rigour (see the reviews [15, 101]). An important point is
that all criteria must be formulated purely in terms of the low energy field the-
ories themselves, without reference to a particular quantum gravity theory. This
is crucial for the low energy field theories can usually be given a precise defini-
tion, even though quantum gravity theories are not mathematically well-founded.
Hence some of the predictions of the swampland programme yield interesting and
well-defined mathematical questions, which can be studied in their own right.

Part of the work of this thesis was motivated by a bulk of conjectures known
as the swampland distance conjectures, made by Ooguri and Vafa [98], which con-
cern the moduli spaces of the internal manifolds (e.g. Calabi–Yau manifolds in
string theory or G2-manifolds in M-theory). Physically, they represent the moduli
spaces of parameters in the low-energy theory, and they are endowed with a natural
Riemannian metric (which is to be interpreted as a kinetic term in the action func-
tional). For Calabi–Yau manifolds, this metric coincides with the Weil–Petersson
metric on the moduli space of complex structures and with the Hodge metric on the
Kähler cone. On the other hand, for G2-manifolds the relevant metric to consider
is the volume-normalised L2-metric [52].

The main prediction of the swampland distance conjectures, which is often
alone called the swampland distance conjecture, is that the low-energy effective
field theory is expected to break down at infinite distance in the moduli space.
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More precisely, it is conjectured that infinite-distance limits in the moduli space
are related to the appearance of an ‘infinite tower of light states’, with masses
decaying exponentially in the moduli space distance. In more geometric terms,
this means that along a deformation of the internal special holonomy manifold
which does not remain in a bounded region of the moduli space, an infinite number
of the mass parameters determined by the internal geometry (for instance through
the Kaluza–Klein reduction, but this is not the only possible source of physical
states) should decay to zero at the same rate. My understanding is that physicists
expect that along such deformations, the usual prescription of keeping only the
massless states in the low energy limit cannot be consistent, since an arbitrarily
large number of massive modes can be made lighter than any fixed ‘experimental’
energy scale. In such degenerate limits, the right low-energy description should
therefore be a different theory, and this should explain why the different types of
quantum gravity theories are related by dualities.

The swampland distance conjecture has been mainly studied on Calabi–Yau
moduli manifolds (see for instance [31, 53]), and the eigenvalues aspects are notably
backed by numerical evidence [8]. The question of studying this conjecture from
a more analytical point of view was one of the motivations for my first paper
[82], which in particular gave more mathematical grounding for the conjecture by
studying the spectral properties of twisted connected sum G2-manifolds. These
results are exposed in Chapters 2 and 3, and a more detailed overview will be
given in the next section of this introduction.

In their original article, Ooguri–Vafa also made a number of conjectures on
the asymptotic behaviour of the moduli space metric and its curvature, but they
seem too strong to hold in general and may be disproved in some cases (see next
paragraph). Nevertheless, this provides some motivation for trying to understand
the geometry of the moduli spaces of special holonomy manifolds, endowed with
their natural Riemannian metric, and the properties of the associated distance.
An especially interesting related question is to understand whether the moduli
spaces are complete and to distinguish finite-distance limits from infinite-distance
ones. These questions have been well-studied in complex geometry for Calabi–Yau
moduli spaces, but comparatively the moduli spaces of manifolds with exceptional
holonomy are poorly understood.

Moduli spaces. The best understood moduli space of special holonomy man-
ifolds is the moduli space of hyperkähler metrics on the K3 surface (holonomy
SU(2)). The global Torelli theorem identifies this moduli space with the comple-
ment of a countable union of codimension 3 submanifolds in the symmetric space
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SO0(3, 19)/(SO(3) × SO(19)) [111] via the period map. Therefore, the natural
moduli space metric is locally symmetric and nonpositively curved. Moreover,
the moduli space of hyperkähler K3 surfaces is incomplete, and it is known that
finite-distance limits can geometrically be interpreted as degenerations to compact
hyperkähler orbifolds [76].

The situation for the moduli spaces of Calabi–Yau metrics in higher dimensions
is more complicated, and one usually studies separately the Kähler and complex
deformations3. Because of Yau’s theorem, the moduli space of Ricci-flat Kähler
metrics on a fixed complex Calabi–Yau manifold can be identified with the cone of
Kähler classes, which can be explicitly described in terms of the intersection form
and the classes of analytic cycles [36]. The Hodge metric on the Kähler cone turns
out to be Hessian and is entirely determined by the intersection form: hence this
is a purely topological object. It is conjectured that this metric is nonpositively
curved, and this has been proved for certain classes of Calabi–Yau threefolds [121],
but to the authors’ knowledge the general case is still open. In terms of distances,
it is not difficult to prove that cohomology classes which are big and nef correspond
to finite-distance limits at the boundary of Kähler cones [92], and hence that the
Hodge metric may be incomplete. Such finite-distance limits can be interpreted
geometrically: the underlying Calabi–Yau metrics associated with a deformation
of the Kähler class to a big class degenerate to a Kähler current which can be
seen as a singular Calabi–Yau metric on a complex analytic space with canonical
singularities [27, 113].

For the deformations of the complex structure of Calabi–Yau manifolds, the
main tool used to understand the moduli spaces is the notion of period map orig-
inally introduced by Griffiths [49, 50], which determines the Weil–Petersson met-
ric in a natural way [108, 112]. There is a rich theory studying the asymptotic
behaviour of the period map [105], which was used by Wang to prove that finite-
distance limits along one-parameter families of Calabi–Yau manifolds correspond
to degenerations to varieties with canonical singularities [117]. The relation be-
tween the Weil–Petersson metric and the period map was axiomatised by Lu and
Sun [90], who deduced various results about the volume and the first Chern class
of the moduli spaces [91]. Regarding the local geometry, it was for a long time
expected that the scalar curvature of the Weil-Petersson metric should be non-
positive at least near infinite-distance limits (see for instance [118], and this also
3Both types of deformations are supposed to be in some sense dual to each other, according to
mirror symmetry.
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motivated one of the conjectures of Ooguri and Vafa [98]), but eventually it was
disproved for certain Calabi–Yau threefolds [114].

By contrast, much less is known about G2-moduli spaces. Joyce proved that the
moduli space of torsion-free G2-structures on a compact 7-manifold M is a smooth
manifold of dimension b3(M)4 (when it is nonempty), locally modelled on an open
cone in H3(M) [64]; thus the moduli space is even an affine manifold. Moreover,
it is naturally immersed as a Lagrangian submanifold of H3(M) ⊕ H4(M) [65].
But these results are purely local, and little is known about the global structure
of the moduli space, partly because of the lack of an analogue of Yau’s theorem
[123] in G2-geometry. Nevertheless, there have been some recent advances on
the topology of the moduli spaces: it was proved by Crowley–Goette–Nordström
that the quotient of the space of torsion-free G2-structures by the full space of
diffeomorphisms is disconnected in some cases [33]. Even more recently, Crowley–
Goette–Hertl proved that the quotient of the space of torsion-free G2-structures
by the group of diffeomorphisms isotopic to the identity may be non-aspherical
[32].

From a geometric perspective, Hitchin first noticed that the Hessian of the vol-
ume functional is non-degenerate [60], and when b1(M) = 0 it defines a metric with
Lorentzian signature on the moduli space. Around the same time, it was pointed
out in the physics literature that by taking the logarithm of the volume one ob-
tains a potential function with definite Hessian, which coincides (up to a constant
factor) with the volume-normalised L2-metric [10, 54, 55, 61]. This is reminiscent
of the Hodge metric on Kähler cones, but the high degree of nonlinearity of the
potential function makes the geometry of G2-moduli spaces much more difficult to
understand. Grigorian and Yau [52] obtained formulas for the curvatures of the
moduli space metric, which are unfortunately difficult to interpret geometrically.
Nevertheless, an interesting feature of these formulas is their formal similarity with
the equations describing the geometry of the moduli spaces of complex structures
on Calabi–Yau threefolds. Further similarities were exhibited by the work of Ka-
rigiannis and Leung [73], who developed a notion of Intermediate Jacobians for
G2-manifolds.

More recent progress was made by the author in two articles [83, 84] concerning
both the distance aspects and the local geometry of the moduli spaces. These
results form Chapters 4 and 5 of the present manuscript. In the next section, we
shall give an overview of the results proved in this thesis and its organisation.
4In his article, Joyce attributes the result to Bryant and Harvey in unpublished work. Indeed,
the result was announced in [16, p.561] in the case of simply connected manifolds.

7



Main results and organisation of the thesis

The present thesis is divided into 6 chapters. The first one contains background
material and sets the notations and conventions that will be used throughout. In
the first section, we briefly introduce the the fundamental concepts of holonomy,
geometric structures and intrinsic torsion, and discuss the classification of Rie-
mannian holonomy groups and Berger’s list. Then in the second section we give a
self-contained exposition of the basics of G2-geometry, spanning from the notion
of positive linear form on R7 to G2-manifolds and their moduli spaces. Most of the
material of this first chapter can be found elsewhere in the literature (for instance
in Joyce’s monograph [66]), with the exception of a few observations about the
linear algebra of positive forms in §1.2.1 which will be clear to the experts but for
which we could not find a reference.

Gluing constructions and neck-stretching. The following two chapters (2
and 3) form the most analytical part of the thesis and stem from the article [82]
by the author, which studies the analysis of differential operators for a certain
class of ‘neck-stretching’ problems. The original motivation for this came from
the swampland distance conjecture mentioned in the previous section. Indeed,
in the twisted connected sum construction of G2-manifolds, two asymptotically
cylindrical G2-manifolds are glued together in order to form a family of compact
manifolds MT endowed with a closed G2-structure, φT , which can be perturbed
to a nearby torsion-free one, φ̃T , in the limit where the length of the neck region
2T → ∞; and this limit is at infinite-distance in the moduli space5. Hence it is
an interesting question to study the asymptotic behaviour of the spectrum of the
Laplacian operator of (MT , φ̃T ) and to interpret the presence of low eigenvalues in
geometrical terms.

The first technical difficulty is that φ̃T is only implicitly defined, and the orig-
inal analytical argument in the twisted connected sum construction only gives an
estimate ∥φ̃T − φT ∥C0 ≲ e−δT , where δ > 0 is small enough and T → ∞. In par-
ticular, it does not give control on the derivatives of φ̃T , which would be needed
in order to approximate the behaviour of the Laplacian operator associated with
φ̃T by the Laplacian associated with φT

6. This problem is tackled in Chapter 2,
where we adapt Joyce’s general existence theorem for torsion-free G2-structures on
compact manifolds – which gives C0-estimates – to prove a deformation theorem
5This is because in this limit the volume goes to infinity; see §4.1.1 and also Lemma 4.18.
6For some purposes, C1 or C2-estimates might be enough, but to be able to apply the analytical
tools developed in Chapter 3 it is more convenient to have Ck-estimates for any k ∈ N.
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with Ck-estimates for k ≥ 1. This is an improvement and generalisation of an ar-
gument given by the author in the last section of [82]. Our theorem requires rather
strong hypotheses, but using an additional analytical result proved in Chapter 3
we can show that they are satisfied in the case of twisted connected sums, and
deduce improved estimates ∥φ̃T − φT ∥Ck ≲ e−δT for any k ∈ N.

In the following chapter, we turn our attention to the analysis of the Laplacian
operator associated with φT . In fact, since this problem has nothing to do with G2,
we consider the more general setting of a family of compact Riemannian manifolds
(MT , gT ) obtained from the gluing of two asymptotically cylindrical manifolds.
Moreover, we will not specifically consider the Laplacian operator but a larger
class of differential operators PT adapted to the geometry of this neck-stretching
problem, in a sense defined in §3.1.1. Our goal is to build an approximate Fredholm
inverse for the map induced by PT on Sobolev spaces of sections, with good control
on the growth of its operator norm in the limit where T → ∞.

Our first task, which is carried out in Section 3.1, is to define good notions
of substitute kernels and cokernels, with a particular emphasis on the case where
the model operator on the cylinder admits 0 as an indicial root. Under a certain
assumption justified in §3.1.2, we develop in Sections 3.2 and 3.3 a general method
to construct a Fredholm inverse of PT on the complement of the substitute kernel
and cokernel, and show that its norm (as an operator between Sobolev spaces of
sections) grows at most polynomially with T . Finally, in Section 3.4 our method
is refined in order to derive precise estimates for the asymptotic behaviour of the
lower spectrum of the Laplacian operator acting on differential forms in the neck-
stretching limit. Namely, we show that the asymptotic density of low eigenvalues
of the Laplacian ∆T of (MT , gT ) is equivalent to the density of eigenvalues of the
Laplacian acting on the product S1

2T × X, where X is the cross-section of the
cylindrical neck which has length 2T . Going back to our physical motivation, I
have been told by physicists that for twisted connected sum G2-manifolds this
confirms the idea that M-theory should be dual to another theory compactified on
X, in the limit where the length of the neck goes to infinity.

Geometry of the moduli spaces. In the second half of this thesis, from Chap-
ter 4 to Chapter 6, we will be interested in the moduli space M of torsion-free
G2-structures of a compact G2-manifold M and the properties of the volume-
normalised L2-metric, denoted by G . A few basic facts about this metric, including
the observation that it is Hessian when b1(M) = 0, are explained in Section 4.1,
which also gathers various results which will be useful in the following chapters.
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The rest of Chapter 4 is an extended version of [84], where the author proved
that G2-moduli spaces may be incomplete (even in the case of manifolds with
full holonomy). I was motivated by the corresponding statements for Calabi–Yau
moduli spaces: for both the Kähler cone and the complex structure moduli space,
the asymptotic behaviour of the moduli space metric near the boundary seems
to detect something about the type of degenerations occurring, in so far as finite-
distance limits correspond to the formation of canonical singularities as opposed to
more singular degenerate limits. Moreover, in both cases there are incompleteness
criteria which may be proved without knowing anything about the underlying
Calabi–Yau metrics: they only take advantage of the special properties satisfied
by the moduli space metric.

For G2-manifolds, one special property is that the metric G is Hessian, and in
Section 4.2 we exploit this observation to derive a simple formula for the energy of
a path {φt}t∈(0,1] of torsion-free G2-structures in the moduli space. This allows us
to find sufficient topological and geometrical conditions for its energy and length
to be finite, from which we deduce that the generalised Kummer G2-manifolds
have incomplete moduli spaces. In the last section we discuss other incomplete-
ness criteria and prove the incompleteness of the moduli spaces for Karigiannis’
resolution of isolated conical singularities and the Joyce–Karigiannis construction
(cases which were not treated in [84]). We also mention some interesting open
questions for future study.

In Chapter 5, which is based on the paper [83], we study the local properties
of the metric G and define a new notion of period map for G2-manifolds with
vanishing first Betti number. In the first section, we compute the derivatives of the
potential function up to order 4 and derive some consequences for the curvatures of
the moduli spaces. In Section 5.2 we define a certain ‘twisted version’ of the Hodge
decomposition of M associated with a torsion-free G2-structure φ and show that
it defines an element in the homogeneous space D ≃ GL(n + 1)/({±1} × O(n)),
where n + 1 = b3(M). In the following section we study the properties of the
induced map Φ : M → D . We notably point out that this is an immersion, which
satisfies differential constraints similar to Griffiths’ notion of transversality for the
period map of Calabi–Yau manifolds, and that it determines the metric on the
moduli spaces in a natural way. More precisely, we show that G is the pull back
under Φ of a degenerate homogeneous quadratic form defined on D. We also give
a necessary and sufficient condition for the immersion Φ(M ) ⊂ D to be totally
geodesic: namely, it is totally geodesic if and only if the symmetric cubic form
known as the Yukawa coupling is a parallel tensor on M . We then relate this
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condition to the formulas we obtained for the derivatives of the potential. Lastly,
in Section 5.4 we study the differential constraints satisfied by the period mapping
from the point of view of exterior differential systems, and relate our notion of
period map to the classical notion of G2-period map as a Lagrangian immersion
of M into H3(M) ⊕H4(M).

Finally, Chapter 6 is a small chapter mostly meant to complement the previous
one, where we make some remarks on the moduli spaces of compact G2-manifolds
whose restricted holonomy group is a proper subgroup of G2 and which have
vanishing first Betti number. We notably prove that, in the cases of T 7/Γ and
(T 3 × K3)/Γ, the Yukawa coupling turns out to be parallel and therefore the
period map is a totally geodesic immersion. We also make some brief comments
on the case of (S1 × CY 3)/Γ. In Appendix A, we also give a classification of the
possible geometries for the moduli spaces in the flat case.
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Chapter 1

Background

This chapter gathers some fundamental background material. The first section is
a brief overview of the concepts of geometric structure and holonomy, where we
also review the classification of Riemannian holonomy groups. Section 1.2 is an
introduction to the geometry of G2-manifolds, where we set the notations that
will be used throughout this dissertation and emphasize a few useful algebraic
properties of positive forms.

1.1 Geometric structures

1.1.1 Bundles and connections. Let M be a manifold (a second-countable
Hausdorff topological space endowed with an atlas of charts with smooth transition
functions) of dimension m. If E is a rank r vector bundle over M , a connection
on E is a linear map ∇ : Ω0(E) → Ω1(E) satisfying the so-called Leibniz rule:

∇(fs) = df ⊗ s+ f∇s, ∀f ∈ C∞(M), ∀s ∈ Ω0(E).

There is a unique way to extend ∇ to a collection of linear maps d∇ : Ωk(E) →
Ωk+1(E) such that d∇ = ∇ on Ω0(E) and d∇ satisfies the following generalisation
of the Leibniz rule:

d∇(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ (d∇η), ∀ω ∈ Ωk(M), ∀η ∈ Ωl(E).

Using this Leibniz rule, it is easy to show that there exists a unique End(E)-valued
2-form F∇ ∈ Ω2(End(E)), called the curvature of ∇, such that for any η ∈ Ωk(E)
we have d2

∇η = F∇ ∧ η. When ∇ is not flat, that is F∇ ̸≡ 0, then (Ω•(E), d∇) fails
to be a chain complex.

More abstractly, one can think of connections in terms of the frame bundle
FE of E, whose fibre over a point p ∈ E is the manifold of linear automorphisms
Ep ≃ Rr. The group GL(r) acts on the right on E by post-composition, and this
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gives FE the structure of a GL(r)-principal bundle. Then the data of a connection
on E is equivalent to an equivariant splitting of the tangent space TFE into
vertical and horizontal components, and the curvature of the connection measures
the failure of integrability of the horizontal distribution.

Given a connection ∇ on E, one may associate to any piecewise C1 path
γ : [0, 1] → M a parallel transport map Pγ : Eγ(0) → Eγ(1), which is a linear
isomorphism. In particular, when γ is a loop based at p ∈ M , Pγ is an auto-
morphism of the fibre Ep. The set of such automorphisms forms a Lie subgroup
Holp(∇) ⊂ GL(Ep), called the holonomy group of ∇ based at p. After choosing
an identification of Ep with Rr, Holp(∇) can be regarded as a subgroup of GL(r)
whose conjugacy class is independent of the choice of base point. For this reason,
one often calls any representative H of this conjugacy class the holonomy group of
∇ and drops the subscript p. The restricted holonomy group Hol0(∇) is by defi-
nition the identity component of Hol0(∇). By a theorem of Ambrose and Singer
[6], the curvature of a connection determines its restricted holonomy.

The importance of the notion of holonomy is best understood from the per-
spective of principal bundles. One can easily see that the holonomy group of a
connection ∇ on E is contained (up to conjugacy) in a subgroup G ⊂ GL(r) if
and only if there exists a principal subbundle P ⊂ FE with structure group G

which is invariant under parallel transport; that is, such that ∇ can be reduced
to a connection on P. Hence the holonomy group of a connection is the smallest
structure group to which it can be reduced.

An especially interesting case is when the subgroup G ⊂ GL(r) arises as the
stabiliser of a nontrivial element Ψ in a linear representation W of GL(r). For such
a representation, we may construct the associated bundle WE = (FE ×W )/GL(r).
Then there is a one-to-one correspondence between the principal subbundles of FE

with structure group G and the sections ψ of WE such that for any p ∈ M , there
is an identification WE,p ≃ W mapping ψp to Ψ. It follows that a connection ∇
restricts to a G-subbundle P ⊂ FE if and only if the associated section ψ of WE

is parallel (for the connection induced by ∇ on WE). To summarise, one might say
that the holonomy of a connection determines and is characterised by its parallel
tensors.

1.1.2 G-structures and intrinsic torsion. Let us now consider the special case
of the vector bundle E = TM , endowed with a connection ∇. We can define a
section T∇ of the vector bundle Λ2T ∗M ⊗ TM , called the torsion of ∇, by

T∇(u, v) = ∇uv − ∇vu− [u, v], ∀u, v ∈ C∞(TM).
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The connection ∇ is called torsion-free if T∇ ≡ 0. If α is a 1-form on M , one can
easily calculate that ∇α(u, v) − ∇α(v, u) = dα(u, v) − α(T∇(u, v)) for all u, v ∈
C∞(TM). From this it follows that if ∇ is torsion-free then the antisymmetric
part of ∇α coincides with dα (up to a combinatorial coefficient). This fact readily
generalises to differential forms of any degree; hence for torsion-free connections
parallel forms are automatically closed.

There is also a notion of torsion for geometric structures. Recall that if G is
a Lie subgroup of GL(m), a G-structure on M is a principal G-subbundle P of
FT M . It is called torsion-free if it admits a torsion-free connection. Alternatively,
if P is defined by a section ψ of an associated bundle, then it is torsion-free if and
only if M admits a torsion-free connection for which ψ is parallel. The torsion-free
condition can often be interpreted as an integrability condition. For instance, in
even dimension a GL(m/2,C)-structure corresponds to an almost complex struc-
ture J , and it is torsion-free if and only if it is integrable, in the sense that it
is induced by an atlas of complex charts with holomorphic transition functions.
Along the same lines, a non-degenerate 2-form ω is symplectic (closed) if and only
if the corresponding Symp(m) structure is torsion-free.

There is however a very useful case where the torsion-free condition is always
satisfied, which is that of O(m)-structures. Indeed, an O(m) structure on M is
just a Riemannian metric g and the fundamental theorem of Riemannian geometry
states that it admits a unique torsion-free connection, the Levi-Civita connection.
Unless otherwise stated, all notions of curvature, connection and holonomy for a
Riemannian metric will implicitly refer to its Levi-Civita connection.

For a proper subgroup G ⊂ O(m), the torsion-free condition becomes more
subtle to decipher. If P is a G-structure, it induces a Riemannian metric g (since
G ⊂ O(m)) and any connection on P must be compatible with g. Therefore,
P is torsion-free if and only if the Levi-Civita connection ∇g of g reduces to a
connection on P. In general, this condition may not be satisfied and ∇g will be
written ∇g = ∇′ + a where ∇′ is a connection on P and a ∈ Ω1(End(TM)). The
1-form a depends on the choice of compatible connection ∇′ only up to a 1-form
taking values in Ad(P) = (P × g)/G, where g is the Lie algebra of G. Hence if
we denote by m the orthogonal complement of g in so(m), the projection τP of a
onto mP = (P ×m)/G does not depend on any arbitrary choice and is called the
intrinsic torsion of P1. Moreover, we see that P admits a unique connection ∇P

1One may also define the intrinsic torsion if G is not a subgroup of O(m), but the definition is
somewhat more involved. See [66] for instance.
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such that ∇g = ∇P + τP , called the canonical connection2, and P is torsion-free
if and only if ∇g = ∇P .

As previously mentioned, we will be interested in the case where G is the
stabiliser of a non-trivial vector Ψ in a linear representation of GL(m). It follows
from our discussion that if a G-structure P is torsion-free then the corresponding
section ψ is parallel, and therefore up to conjugacy the holonomy group of g must
be a subgroup of G. The converse is also true: if Hol(g) ⊂ G, then the Levi-Civita
connection of g admits a parallel G-structure. In this sense, holonomy detects the
presence of additional compatible geometric structures on a Riemannian manifold.
For this reason, the classification of Riemannian holonomy groups plays a central
role in geometry, and we will outline it in the next part.

1.1.3 Berger’s list of Riemannian holonomy groups. The list of possible
Riemannian holonomy groups is a priori very long, so in order to classify them
it is reasonable to make a few assumptions. First, up to covering maps one may
restrict to the case when M is simply connected, which forces the holonomy group
of any Riemannian metric g on M to be connected. Moreover, one usually assumes
that the metric g is irreducible, in the sense that the holonomy group acts irre-
ducibly on the tangent space; otherwise one can easily show that (M, g) is locally a
Riemannian product, and in fact a theorem of de Rham [35] implies that if (M, g)
is complete, simply connected and reducible then it is globally a Riemannian prod-
uct, in which case its holonomy group is just the direct product of the holonomy
groups of each irreducible component.

A Riemannian manifold (M, g) whose curvature tensor is parallel is said to
be locally symmetric. If moreover (M, g) is complete and simply connected, this
condition implies that it must be a symmetric space (the geodesic involution at
every point of M can be extended to a global isometry). Symmetric spaces are in
particular homogeneous (there is a transitive isometric action by a Lie group) and
they were classified by É. Cartan using his own classification of Lie groups. From
this classification, it is possible to deduce the list of holonomy groups of symmetric
spaces. Since a simply connected locally symmetric space is always isometric to
an open subset of a symmetric space, this settles the classification of Riemannian
holonomy groups in the locally symmetric case.

In his PhD thesis [11], Berger used Cartan’s theory of Lie groups in order to
derive constraints on the possible holonomy groups for non-symmetric (∇R ̸≡ 0)
2This terminology is not widely accepted since the notion of canonical connection may depend
on the context, but it is suitable for our purpose.
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dimension group name/description
m ≥ 1 SO(m) generic case

2m, m ≥ 2 U(m) Kähler
2m, m ≥ 2 SU(m) Calabi–Yau/Ricci-flat Kähler
4m, m ≥ 2 Sp(m) hyperkähler
4m, m ≥ 2 Sp(1). Sp(m) quaternionic-kähler

7 G2 exceptional
8 Spin(7) cases

Table 1.1: Berger’s list of Riemannian holonomy groups.

simply connected spaces3. For this he used the Ambrose-Singer holonomy theorem
together with the symmetries of the Riemann curvature tensor and the Bianchi
identity to prove that for most irreducible and simply connected subgroups H of
SO(m), a metric with holonomy H would have to be locally symmetric. A striking
fact about the list of possible candidates that he obtained is that it is actually
quite short - and it became even shorter a few years later when Alekseevskii ruled
out the case of Spin(9) ⊂ SO(16) [5]. With this amendment, the complete list is
shown in Table 1.1.

At the time of Berger, it was not known whether all the groups on the list could
actually occur as the holonomy group of an irreducible non-symmetric Riemannian
manifold, except for SO(m) (the generic case) and U(m) (generic Kähler metrics).
It took another thirty years or so to prove that it was indeed the case. The cases of
SU(m) (Ricci-flat Kähler metrics), Sp(m) (hperkähler metrics) and Sp(1). Sp(m)
(quaternionic-kähler metrics - which are not in fact Kähler) are related to complex
geometry, and by now there is a rather rich set of tools available to study them.
Complete examples of such metrics were notably given by Calabi [21] (for SU(m)
and Sp(m)) and Galicki and Lawson [44, 45] (for Sp(m). Sp(1)), and in the compact
setting the existence of Kähler Ricci-flat metrics follows from Yau’s solution of the
Calabi conjecture [123] - hence such metrics are also called Calabi–Yau.

The question of the existence of metrics with exceptional holonomy - G2 and
Spin(7) - remained open for a long time, before being finally settled by Bryant
[16] in 1987, using the theory of exterior differential systems4. A few years later,
Bryant–Salamon constructed the first complete examples using cohomogeneity 1
techniques [19]. The first compact examples are due to Joyce [64, 65, 63], who de-
veloped a general gluing-perturbation method which is still some thirty years later
the only available tool for constructing compact exceptional holonomy manifolds.
3In fact Berger considered the more general case of metrics with arbitrary signature.
4Which incidentally was also first developed by É. Cartan and further extended by Kähler.
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1.2 G2-geometry

This section gathers some basic notions of G2-geometry. In §1.2.1, we recall the
definition of positive forms in R7 and a few elements of their linear algebra. G2-
manifolds are introduced in §1.2.2, and their moduli spaces in §1.2.4.

1.2.1 Positive forms on R7. Let us consider R7 equipped with its standard
orientation and denote by R∗

7 its dual space. A 3-form φ ∈ Λ3R∗
7 is said to be

positive if for any v ∈ R7\{0} we have

(v⌟φ) ∧ (v⌟φ) ∧ φ > 0 (1.1)

relative to the standard orientation. Here ·⌟· denotes the interior product of a
vector in R7 and an alternating form in Λ(R∗

7). The set Λ3
+R∗

7 of positive forms
is nonempty and open in Λ3R∗

7, and is acted upon transitively by the group of
orientation-preserving automorphisms GL+(7). The stabiliser of any positive form
is conjugated to the group G2 ⊂ SO(7). This is a compact, simple Lie group of
dimension 14. A positive form φ ∈ Λ3

+R∗
7 canonically determines an inner product

on R7, which we denote by gφ or ⟨·, ·⟩φ, and a 7-from µφ ∈ Λ7R∗
7 characterised by

(v⌟φ) ∧ (u⌟φ) ∧ φ = 6⟨u, v⟩φµφ, ∀u, v ∈ R7, and
|φ|2gφ

= 7.
(1.2)

The dual 4-form of φ with respect to the Hodge operator ∗φ associated with gφ

is commonly denoted by Θ(φ) ∈ Λ4R∗
7. The maps φ 7→ gφ, φ 7→ µφ, φ 7→ ∗φ and

φ 7→ Θ(φ) are non-linear and equivariant under the action of GL+(7).

Example 1.1. Let R7 be endowed with the canonical basis (e1, . . . , e7) and let
(e1, . . . , e7) be the dual basis of R∗

7. For conciseness we shall write ei1···ik =
ei1 ∧ · · · ∧ eik for any 1 ≤ i1, . . . , ik ≤ 7. Then we can define the following standard
positive form:

φ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245.

The associated inner product g0 is the one for which the canonical basis of R7 is
orthonormal, and the dual 4-form of φ0 reads:

Θ(φ0) = e3456 + e1256 + e1234 − e2467 + e2357 + e1457 + e1367.

Any positive 3-form φ, together with the 4-form Θ(φ) and the inner product
⟨·, ·⟩φ, satisfy the following important property. If u, v, w, z ∈ R7 have unit norm
with respect to ⟨·, ·⟩φ, then the following inequalities hold:

|φ(u, v, w)| ≤ 1 and |Θ(φ)(u, v, w, z)| ≤ 1.
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In other words, for any oriented 3-plane V ⊂ R7 the restriction of φ to V is smaller
or equal to the volume element associated with the restriction of φ. Similarly,
for any oriented 4-plane W ⊂ R7 the restriction of Θ(φ) is smaller or equal to
the volume element of the restriction of gφ. The 3-planes (respectively 4-planes)
realising the equality case are called associatives (respectively co-associatives).

Let us now fix a positive form φ on R7, and identify the stabiliser of φ with G2.
The exterior algebra Λ(R∗

7) can be decomposed into irreducible representations of
G2 as follows. The representation R∗

7 is irreducible, as G2 acts transitively on the
unit sphere. The space of 2-forms can be decomposed as:

Λ2R∗
7 = Λ2

14 ⊕ Λ2
7

where Λ2
14 is isomorphic to the Lie algebra of G2 and Λ2

7 ≃ R∗
7. In particular, any

ω ∈ Λ2R∗
7 can be written uniquely as ω = v⌟φ + χ, where v ∈ R7 and χ ∈ Λ2

14.
In order to decompose Λ3R∗

7, let us introduce a bilinear map End(R7) ⊗ Λ(R∗
7) →

Λ(R∗
7) defined by:

h·η = d

dt

∣∣∣∣∣
t=0

(eth)∗η = η(h·, ·, · · · )+· · ·+η(· · · , ·, h·), ∀(h, η) ∈ End(R7)×Λ(R∗
7).

(1.3)
Up to a sign, this is the derivative of the action of GL(7) on ΛR∗

7. Since GL+(7) acts
transitively on Λ3

+R∗
7 which is open in Λ3R∗

7, the map h ∈ End(R7) 7→ h ·φ ∈ Λ3R∗
7

is onto. The representation End(R7) can be decomposed as:

End(R7) ≃ Λ2R∗
7 ⊕ S2R∗

7 ≃ Λ2
14 ⊕ Λ2

7 ⊕ R ⊕ S2
0R∗

7

where Λ2
14 is identified with the Lie algebra of G2 and S2

0R∗
7 is isomorphic to the

space of trace-free self-adjoint endomorphisms with respect to gφ. The kernel of the
above map End(R7) → Λ3R∗

7 is Λ2
14, and therefore we obtain the decomposition:

Λ3R∗
7 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27

where Λ3
7 ≃ R∗

7 and Λ3
27 ≃ S2

0R∗
7. In particular, any 3-form η ∈ Λ3R∗

7 can be
written uniquely as η = λφ + v⌟Θ(φ) + ν, where λ ∈ R, v ∈ R7 and ν ∈ Λ3

27. As
ΛkR∗

7 ≃ Λ7−kR∗
7 under Hodge duality, this give a full decomposition of ΛR∗

7. We
shall denote by πm the projection of ΛkR∗

7 onto Λk
m.

We finish these generalities with a few useful formulas for the first variation
of various tensors associated with an inner product or a positive form on R7, and
some interesting consequences. First, we begin with some properties of the bilinear
map End(R7) ⊗ Λ(R∗

7) → Λ(R∗
7) previously defined:
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Lemma 1.2. For h ∈ End(R7) we denote by δh : Λ(R∗
7) → Λ(R∗

7) the linear map
η 7→ h · η. Then for h, h′ ∈ End(R7) the following properties are satisfied:

(i) The map δh is a derivation of degree 0 of Λ(R∗
7). That is, it preserves the

degree of forms and h·(ω∧ω′) = (h·ω)∧ω′+ω∧(h·ω′) for any ω, ω′ ∈ Λ(R∗
7).

(ii) [δh, δh′ ] = −δ[h,h′].

(iii) If h is (anti-)self-adjoint for some inner product on R7, then δh is (anti-)self-
adjoint for the induced inner product on Λ(R∗

7).

Proof. That δh is a derivation of degree 0 can be seen by differentiating the iden-
tity (eth)∗(ω ∧ ω′) = (eth)∗ω ∧ (eth)∗ω′. Moreover, by definition δ : End(R7) →
End(Λ(R∗

7)) is the negative of the natural action of the Lie algebra End(R7) on
Λ(R∗

7), and thus [δh, δh′ ] = −δ[h,h′]. Last, if h is g-self-adjoint and ω ∈ R∗
7, then

the dual vector of δhω = ω ◦ h is h(v), where v ∈ R7 is dual to ω. From this it
follows that δh is self-adjoint for the inner product induced by g on R∗

7, and thus
on Λ(R∗

7). We can argue similarly when h is anti-self-adjoint for g, since then the
dual vector of ω ◦ h ∈ R∗

7 is −h(v) if v ∈ R7 is the vector dual to ω.

The next lemma gathers a few useful identities which are easy to check.

Lemma 1.3. Let g be an inner product on R7 and h ∈ End(R7), and consider a
1-parameter family of inner products gt such that g0 = g and dgt

dt

∣∣∣
t=0

= g(h·, ·) +
g(·, h·). Let ω, ω′ ∈ ΛkR∗

7 for some 0 ≤ k ≤ 7. Then we have the following first
variation formulas:

d

dt

∣∣∣∣∣
t=0

⟨ω, ω′⟩gt = −⟨h · ω, ω′⟩g − ⟨ω, h · ω′⟩g,

d

dt

∣∣∣∣∣
t=0

∗gt ω = h · (∗gω) − ∗g(h · ω),

d

dt

∣∣∣∣∣
t=0

µgt = tr(h)µg.

These two lemmas have a few consequences that will be useful in the rest of
the article. First note that if h is self-adjoint for g, then δh is self-adjoint for the
inner product induced by g on Λ(R∗

7) and thus with the notations of the above
lemma we have

d

dt

∣∣∣∣∣
t=0

⟨ω, ω′⟩gt = −2⟨h · ω, ω′⟩g

for any ω, ω′ ∈ ΛkR∗
7. This implies:
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Corollary 1.4. Let h, h′ ∈ End(R7), and suppose that h is a trace-free endomor-
phism, self-adjoint with respect to an inner product g, and h′ is anti-self-adjoint
for g. Then for any ω ∈ ΛkR∗

7 we have:

h · (∗gω) = − ∗g (h · ω), and h′ · (∗gω) = ∗g(h′ · ω).

Proof. Consider the family of inner products gt = (eth)∗g. Using the previous
lemmas, we can differentiate the identity ω′ ∧ ∗gtω = ⟨ω′, ω⟩gtµgt at t = 0 which
yields:

ω′ ∧ h · (∗gω) − ω′ ∧ ∗g(h · ω) = −2⟨ω′, h · ω⟩gµg = −2ω′ ∧ ∗g(h · ω)

and hence ω′ ∧h · (∗gω) = −ω′ ∧ ∗g(h ·ω) for any ω′ ∈ ΛkR∗
7, which proves the first

identity.
For the second identity, we note that since h′ is anti-self-adjoint for g, the linear

isomorphisms eth′ preserve g, and thus

∗gω = eth′(∗ge
−th′

ω)

for any t, and differentiating at t = 0 it follows that h′ · (∗gω) − ∗g(h′ · ω) = 0.

Another useful consequence to note is:

Corollary 1.5. If φ is a positive form on R7, then the cubic form

(h1, h2, h3) ∈ S2R∗
7 × S2R∗

7 × S2R∗
7 7−→ ⟨h3 · h1 · φ, h2 · φ⟩φ ∈ R

is fully symmetric.

Proof. The identity

⟨h3 · h1 · φ, h2 · φ⟩φ = ⟨h1 · φ, h3 · h2 · φ⟩φ = ⟨h3 · h2 · φ, h1 · φ⟩φ

holds because δh3 is self-adjoint for the inner product induced by φ in Λ(R∗
7). Thus

the cubic form is symmetric under permutation of h1 and h2. To prove that it is
also symmetric under permutation of h1 and h3, note that since [δh3 , δh1 ] = −δ[h3,h1]

we have

⟨h3 · h1 · φ, h2 · φ⟩φ − ⟨h1 · h3 · φ, h2 · φ⟩φ = ⟨[h1, h3] · φ, h2 · φ⟩φ = 0

where the last equality follows from the fact that [h1, h3] is anti-self-adjoint, and
thus [h1, h3] · φ ∈ Λ3

7 is orthogonal to h2 · φ ∈ Λ3
1 ⊕ Λ3

27.

Finally, we record the following well-known first variations formulas:
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Lemma 1.6. Let φ be a positive form on R7, η ∈ Λ3R∗
7 and let h ∈ End(R7)

be the unique endomorphism orthogonal to Λ2
14 such that h · φ = η. Let φt be a

1-parameter family of positive forms in R7 such that φ0 = φ and dφt

dt

∣∣∣
t=0

= η, and
let ω, ω′ ∈ ΛkR∗

7 for some 0 ≤ k ≤ 7. Then we have the following first variation
formulas:

d

dt

∣∣∣∣∣
t=0

⟨ω, ω′⟩φt = −⟨h · ω, ω′⟩φ − ⟨ω, h · ω′⟩φ,

d

dt

∣∣∣∣∣
t=0

∗φt ω = h · (∗φω) − ∗φ(h · ω),

d

dt

∣∣∣∣∣
t=0

µφt = tr(h)µφ,

d

dt

∣∣∣∣∣
t=0

Θ(φt) = 4
3 ∗φ π1(η) + ∗φπ7(η) − ∗φπ27(η)·

1.2.2 G2-manifolds. Let M be an oriented 7-manifold. According to the discus-
sion of the previous section, a G2-structure corresponds to the data of a 3-form
φ such that φp ∈ TpM is positive for every p ∈ M . Not all 7-manifolds admit
G2-structures: a necessary and sufficient existence condition is that M be ori-
entable and spin [66]. In the remainder of this section we shall assume that these
conditions are satisfied. Moreover, we will denote by Λ3

+T
∗M ⊂ Λ3T ∗M the open

subbundle of positive forms and Ω3
+(M) the set of sections of Λ3

+T
∗M (which is

nonempty by assumption).
The properties of positive forms on R7 carry over to G2-structures on manifolds.

In particular, a G2-structure φ ∈ Ω3
+(M) determines a Riemannian metric gφ, a

volume form µφ and a 4-form Θ(φ) = ∗φφ. Moreover, φ induces a splitting of the
exterior bundle Λ(T ∗M) and identifications

T ∗M ≃ TM,

Λ2T ∗M = Λ2
7T

∗M ⊕ Λ2
14T

∗M, Λ2
7T

∗M ≃ T ∗M,

Λ3T ∗M = Λ3
1T

∗M ⊕ Λ3
7T

∗M ⊕ Λ3
27T

∗M, Λ3
1T

∗M ≃ R, Λ3
7T

∗M ≃ T ∗M,

ΛkT ∗M ≃ Λ7−kT ∗M, k = 0, . . . , 7

where we denote by R the trivial real line bundle M×R. There is a corresponding
splitting of the algebra of differential forms on M , and we will write Ωk(M) =
⊕mΩk

m(M) where Ωk
m(M) = C∞(Λk

mT
∗M), and denote by πm the projection of

Ωk(M) onto Ωk
m(M). Any 2-form ω on M can be written uniquely as ω = ξ⌟φ+χ

with ξ ∈ C∞(TM) and χ ∈ Ω2
14(M), and any 3-form η can be written uniquely as

η = fφ+ ξ⌟Θ(φ) + ν where f ∈ C∞(M), ξ ∈ C∞(TM) and ν ∈ Ω3
27(M).
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Another useful way to describe a 3-form is to decompose End(TM) as

End(TM) ≃ Λ2T ∗M ⊕ S2T ∗M = Λ2
14T

∗M ⊕ Λ2
7T

∗M ⊕ Rgφ ⊕ S2
0T

∗M

where S2
0T

∗M ≃ Λ3
27T

∗M . Then for any 3-form η ∈ Ω3(M), there exists a unique
section h ∈ C∞(End(TM)) orthogonal to Ω2

14(M) such that η = h · φ. Note that
π7(η) = 0 if and only if h is a self-adjoint endomorphism for the metric gφ.

As we discussed in §1.1.2 in the general context of geometric structures, a
G2-structure φ has an associated (intrinsic) torsion τ(φ). Since the orthogonal
complement of the Lie algebra g2 in so(7) is isomorphic to R7 as representation of
G2, τ(φ) is a section of the bundle T ∗M ⊗ TM ≃ End(TM). Hence the torsion
τ(φ) can be decomposed into four components commonly denoted by τ0 ∈ C∞(M),
τ1 ∈ Ω1(M), τ2 ∈ Ω2

14(M) and τ3 ∈ Ω3
27(M). These torsion forms are related to dφ

and d(Θ(φ)) in the following way:

dφ = τ0Θ(φ) + 3τ1 ∧ φ+ ∗φτ3, d(Θ(φ)) = 4τ1 ∧ Θ(φ) + τ2 ∧ φ.

A G2-structure φ is called torsion-free if τ(φ) ≡ 0, that is if φ is parallel for the
Levi-Civita connection of gφ. Because of the above identities, this amounts to the
condition that φ be closed and co-closed [41]. If this is satisfied, then the holonomy
group of gφ is conjugated to a subgroup of G2, and in particular the metric gφ

is Ricci-flat [14]. A 7-manifold M endowed with a torsion-free G2-structure is
called a G2-manifold. As we mentioned in the previous section, the existence of
metrics with holonomy G2 is known in both the compact and noncompact (and
complete) settings. However, the question of which 7-manifolds admit torsion-free
G2-structures is far from fully understood, even though the topological condition
of existence of G2-structures is quite simple. One reason which accounts for this is
that the equations dφ = 0 = d(Θ(φ)) are highly nonlinear, due to the nonlinearity
of the map φ 7→ Θ(φ). If M is compact, one can still deduce certain necessary
topological conditions. For instance, since a torsion-free G2-structure is always a
non-trivial harmonic form, Hodge theory implies that b3(M) > 0. Similarly, it
is known that the first Pontryagin class p1(M) ∈ H4(M ;Z) of a compact nonflat
G2-manifold is always nonzero [66]. But we do not know any sufficient topological
conditions for the existence of torsion-free G2-structures on a compact manifold.

Let us now discuss further consequences of Hodge theory on a compact con-
nected G2-manifold (M,φ). Due to a Weitzenböck formula, the Laplacian operator
∆φ = dd∗φ + d∗φd associated with gφ leaves invariant each component of the split-
ting Ωk(M) = ⊕Ωk

m(M). Therefore, the Hodge theorem yields a decomposition of
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the de Rham cohomology groups Hk(M) ≃ ⊕Hk
m(M), and moreover isomorphic

representations lead to isomorphic components in cohomology. In particular:

H1(M) ≃ H2
7 (M) ≃ H3

7 (M) and H3
1 (M) ≃ H0(M) ≃ R.

This decomposition is analogous to the decomposition of the cohomology of a
compact Kähler manifold into classes of type (p, q). We will denote by H k(M,φ)
the space of k-forms harmonic with respect to gφ, by H k

m(M,φ) the intersec-
tion of H k(M,φ) and Ωk

m(M), and define the refined Betti numbers bk
m(M) =

dimHk
m(M). Since the metric gφ is Ricci-flat, H 1(M) is exactly the space of

parallel 1-forms on M , and is dual to the space of Killing fields. The Cheeger–
Gromoll splitting theorem [24] implies that gφ has full holonomy G2 if and only if
π1(M) is finite [66, Prop. 10.2.2]. When this condition (or the weaker condition
b1(M) = 0) is satisfied, then H1(M) = H2

7 (M) = H3
7 (M) = 0 and the Hodge

decomposition is reduced to H2(M) = H2
14(M) and H3(M) = H3

1 (M) ⊕ H3
27(M).

Since b3
1(M) = b0(M) = 1, the only undetermined refined Betti numbers are

b2
14(M) = b2(M) and b3

27 = b3(M) − 1.

1.2.3 Dimensional reduction. For later use, it will be important to describe
the geometry of G2-manifolds which do not have full holonomy. In the compact
setting, this occurs when the fundamental group is infinite. In general, if (M,φ)
is a complete G2-manifold which does not have full holonomy, then the universal
cover M̃ of M , endowed with the induced torsion-free G2-structure φ̃, must be
isometric to a product Rk × (N7−k, gN) where N is a simply connected manifold
endowed with a complete Ricci-flat metric which does not split a Euclidean factor.
If M is compact, the Cheeger–Gromoll splitting theorem implies that there is a
finite cover of M isometric to T k × (N, gN) where T k is a flat torus and N is
compact. In any case, the holonomy group of gN must be a proper subgroup of
G2 and also be an item of Berger’s list (a priori it could also be a product thereof,
but this does not occur). There are only three such subgroups: the trivial group
1, SU(2) and SU(3). Let us describe the geometry associated with each of these
holonomy groups and describe their relations to G2-geometry.

In the simplest case where the reduced holonomy group is trivial, then N is
reduced to a point and the universal cover of M is isometric to a flat R7. Up to a
linear change of coordinates, φ̃ can be identified with the standard positive form
φ0 from Example 1.1. Hence M must be isometric to the quotient of (R7, φ0) by
a discrete subgroup of G2 ⋉R7. Compact examples can be constructed by taking
quotients of flat tori.
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When the holonomy group of gN is SU(2) ⊂ SO(4), then k = 3 and the metric
gN is hyperkähler. This means that N admits a triple of symplectic (closed and
non-degenerate) 2-forms ω1, ω2, ω3 satisfying the relations

1
2ωi ∧ ωj = δijµgN

where µgN
is the volume form of gN . Each symplectic form is Kähler with respect to

an integrable complex structure Ji defined by ωi = gN(Ji·, ·). The triple of complex
structures (J1, J2, J3) satisfy the well-known quaternionic commutation relations;
this is related to the isomorphism SU(2) ≃ Sp(1) of Lie groups. Noncompact
complete examples of hyperkähler 4-manifolds include the Eguchi–Hanson metric
on T ∗S2, and ALE or ALF manifolds constructed via the Gibbons–Hawking ansatz.
In the compact case, the only simply-connected examples are K3 surfaces. If one
choses coordinates (t1, t2, t3) on R3 and (N, gω) is a hyperkähler 4-manifold with
hyperkähler triple ω = (ω1, ω2, ω3), then R3×N can be endowed with a torsion-free
G2-structure defined as

dt1 ∧ dt2 ∧ dt3 − dt1 ∧ ω1 − dt2 ∧ ω2 − dt3 ∧ ω3

whose associated metric is dt21 + dt22 + dt23 + gω.
The last possible case in this list is when k = 1, gN has holonomy SU(3) and

N has dimension 6. Like the previous case, it fits within the more general case of
2m-manifolds with holonomy SU(m). Since SU(m) ⊂ U(m) such manifolds are in
particular Kähler: they admit an integrable complex structure J and a symplectic
form ω = g(J ·, ·). The restriction from U(m) to SU(m) corresponds to the exis-
tence of a parallel holomorphic volume form Ω (a nowhere vanishing holomorphic
section of the canonical bundle). The existence of a parallel holomorphic volume
form is equivalent to the condition that the canonical bundle be trivial and the
Kähler metric g be Ricci-flat. The fact that any compact Kähler manifold with
trivial canonical bundle admits a unique Ricci-flat Kähler metric in every Kähler
class is a consequence of Yau’s theorem which we have already mentioned before.

It is worth pointing out that, by the Kodaira embedding theorem [77], any
compact m-fold with holonomy SU(m) is automatically projective if m ≥ 3 (this
statement fails if m = 2). As a consequence of Yau’s theorem, compact Calabi–
Yau manifolds are easy to produce: for instance, any smooth hypersurface in CPm

defined by the vanishing of a homogeneous polynomial of degree m+ 1 has trivial
canonical bundle by the adjunction formula, and hence admits Ricci-flat Kähler
metrics. In the noncompact setting, there is also a wealth of constructions, notably
due to Calabi [21] and Tian–Yau [109, 110].

24



Going back to the case m = 3, let gN be a Calabi–Yau metric on a complex
manifold (N, J), let ω be the corresponding Kähler form and pick a holomorphic
volume form Ω satisfying the normalisation condition

1
6ω

3 = 1
4Ω ∧ Ω.

Then one can define an associated torsion-free G2-structure on R ×N as

dt ∧ ω + Re Ω

where t is the coordinate along R. The associated metric is dt2 + gN .

1.2.4 Moduli spaces. Let M be a compact oriented 7-manifold which admits
torsion-free G2-structures. We denote by D the group of diffeomorphisms of M
acting trivially on H3(M). In particular, it contains the group of diffeomorphisms
isotopic to the identity, but it could be larger. The group D acts by pull-back on
the space Ω3

+(M) of G2-structures on M , leaving invariant the subset of torsion-
free G2-structures. The moduli space M of torsion-free G2-structures is defined
as the quotient of the set of torsion-free G2-structures by this action. It has a
natural topology coming from the C∞-topology of Ω3

+(M), and it was proven by
Joyce [64, Th. C] that it admits a compatible manifold structure of dimension
b3(M). Moreover, the map M → H3(M) sending φD ∈ M to the cohomology
class [φ] ∈ H3(M) is a local diffeomorphism. This endows M with a natural atlas
of charts with affine transition functions, and therefore M even has the structure
of an affine manifold.

Remark 1.7. In fact our definition slightly differs from the convention adopted in
[64] (or in Joyce’s monograph [66, §10.4]) where one takes the quotient by the group
D0 of diffeomorphisms isotopic to the identity (the resulting space may be called
the ‘Teichmüller space’ T of torsion-free G2-structures). With our definition,
we are taking a further quotient by the discrete group Γ = D/D0, but since
the Teichmüller space is locally diffeomorphic to H3(M) and D acts trivially on
this space, it follows that the quotient M = T /Γ is nonsingular and locally
diffeomorphic to H3(M).

Hence M is more of a ‘marked moduli space’ (we fix an identification of H3(M)
with Rb3(M)) of torsion-free G2-structures on M , but we will just call it the moduli
space for simplicity. This does not affect the results which we will prove in Chapters
4 and 5, since with either convention the moduli space is smooth and locally
diffeomorphic to H3(M).
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By means of justifying our choice of convention, let us point out the follow-
ing somewhat subtle issue. Let us look at the moduli space of torsion-free G2-
structures on the torus T 7 = R7/Z7. It is natural to guess that it can be identified
with Λ3

+R∗
7. It is not difficult to see that this is true, with our convention. The

issue is that the structure of the mapping class group of T 7 is rather complicated,
and in particular there are elements of the mapping class group which act trivially
on the cohomology H•(T 7) (this is true for T n for any n ≥ 5 [58, 62]). In particu-
lar, Γ = D/D0 is a non-trivial (even infinitely generated) group, and it acts freely
transitively on the fibres of the covering map T → M .

To see this last point, let φ be a torsion-free G2-structure on T 7, which we
may assume to be induced by a linear positive form on R7. If α1, α2 ∈ D satisfy
α∗

1φ = α∗
2φ, then α2α

−1
1 is an isometry for the metric gφ, which is induced by an

inner product on R7. Hence α2α
−1
1 ∈ G2 ⋉R7. The action of the linearisation

A ∈ G2 of α2α
−1
1 on R∗

7 can be identified with its action on H1(T 7), and the
action of α2α

−1
1 on H3(T 7) can be identified with the action of A on Λ3R∗

7. But
the representation of G2 on Λ3R∗

7 is faithful and by assumption α1, α2 act trivially
on H3(T 7), whence we deduce that A = Id. Therefore α2α

−1
1 is a translation of

T 7, and as such it is isotopic to the identity. That is, α1 and α2 define the same
element of Γ, which proves our claim.

Let us now outline the construction of the manifold structure of M for later use;
or equivalently of the Teichmüller space T . The first step is to find a convenient
description, as a topological space, of the quotient of Ω3

+(M) by the action of D0.
Adapting a result of Ebin [40], this essentially boils down to finding a good slice
for the action of D0. Near a torsion-free G2-structure, this leads to the following
local description [66, Th. 10.4.1]:

Proposition 1.8. Let φ ∈ Ω3
+(M) be a torsion-free G2-structure on M , and denote

by Iφ the subgroup of D0 fixing φ. Define Lφ = {φ̃ ∈ Ω3
+(M), π7(d∗φ̃) = 0}, where

π7 and d∗ come from the G2-structure φ and the associated metric. Then there
exists an open neighbourhood Sφ of φ in Lφ, invariant under Iφ, such that the
natural projection from Sφ/Iφ to Ω3

+(M)/D0 induces a homeomorphism between
Sφ/Iφ and a neighbourhood of φD0 in Ω3

+(M)/D0.

Let us now fix a torsion-free G2-structure on M . We seek to understand the
subspace of Ω3

+(M)/D0 defined by T in a neighbourhood of φD0. To that end, let
us denote by L′

φ the intersection of Lφ with the set of torsion-free G2-structures;
that is, L′

φ = {φ̃ ∈ Ω3
+(M), π7(d∗φ̃) = 0 and dφ̃ = dΘ(φ̃) = 0}. As in the above

proposition, there exists a neighbourhood S ′
φ of φ in L′

φ, invariant under Iφ, such
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that the natural projection from S ′
φ/Iφ to T induces of homeomorphism from

S ′
φ/Iφ to a neighbourhood of φD0 in T . In order to obtain a characterisation of

the torsion-free G2-structures close to φ, let us write:

Θ(φ+ η) = Θ(φ) + 4
3 ∗φ π1(η) + ∗φπ7(η) − ∗φπ27(η) + Fφ(η) (1.4)

where the terms containing projections are the linearisation of Θ at φ and Fφ is a
smooth non-linear map defined for η small enough. Let φ̃ be a closed G2-structure
on M , written uniquely as φ̃ = φ+ξ+dϖ where ξ is harmonic and ϖ is a co-exact
2-form. Then we have the following [66, Prop. 10.4.3]:

Proposition 1.9. There exists a universal constant ϵ1 > 0 such that, if φ̃ ∈ Lφ and
∥φ̃−φ∥C0 ≤ ϵ1, then φ̃ lies in L′

φ if and only if (dd∗ +d∗d)ϖ+∗d(Fφ(ξ+dϖ)) = 0.

With the above proposition, one may use the Implicit Function Theorem in
an appropriate Banach space in order to prove that for small enough harmonic
3-forms ξ, there exists a unique torsion-free G2-structure φ̃ = φ+ ξ + dϖ lying in
L′

φ and such that the norm of φ̃− φ is controlled by the norm of ξ. In particular,
any small open neighbourhood of φ in L′

φ is homeomorphic to an open subset of
H3(M) through the map sending a torsion-free G2-structure to its cohomology
class. Since D0 acts trivially on H3(M), this implies that the isotropy group Iφ

acts trivially on L′
φ near φ.

This outline of proof shows that the tangent spaces TφD0T and TφDM can be
intrinsically identified with the space of 3-forms H 3(M,φ) which are harmonic
with respect to the metric gφ. Using this identification, we may define a natural
Riemannian metric G on M by

Gφ(η, η′) = 1
Vol(φ)

∫
⟨η, η′⟩φµφ, ∀η, η′ ∈ H 3(M,φ) ≃ TφDM .

That is, G is the volume-normalised L2-metric. It will be our main object of study
in the last three chapters of this thesis.

Remark 1.10. As we mentioned in the introduction, the metric G fits into the
broader context of the moduli spaces of special holonomy manifolds. It is analogous
to the Hodge metric on Kähler cones and to the Weil–Petersson metric on the
moduli spaces of complex structures of Calabi–Yau manifolds.
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Chapter 2

Gluing constructions with
Ck-estimates

As of today, all the known compact G2-manifolds are constructed by a gluing-
perturbation method whose analytical foundations were laid by Joyce [65, 66]. The
idea is to start from a closed G2-structure φ with small torsion, and to deform it
to a nearby torsion-free G2-structure φ̃ within the same cohomology class using
a fixed-point argument. The general existence theorem of Joyce [66, Theorem
11.6.1] gives control on the C0-norm of φ̃−φ and only requires bounds on certain
geometric quantities (curvature, injectivity radius, and various weak norms of the
torsion), making it applicable in a wide range of geometrical contexts.

For certain purposes however, it is more convenient to have control on a num-
ber of derivatives of φ̃ − φ, for instance in order to approximate the differential
operators associated with φ̃ by those associated with φ. In the particular case of
the generalised Kummer construction, Platt was able to improve the control to
C1,α-estimates for any α ∈ (0, 1

2) [103], which was crucial in order to construct
associative submanifolds whose volume is shrinking to zero [39].

In this chapter we shall derive a general theorem giving sufficient conditions to
be able to deform a closed G2-structure φ to a nearby torsion-free G2-structure φ̃
with estimates on ∥φ̃−φ∥Ck , for any k ≥ 1. The precise statement is Theorem 2.14,
which improves and generalises an argument which appears in the last section of
the article [82] by the author. In contrast to Joyce’s existence theorem, our result
gives a control on any number of derivatives of φ̃ − φ, but the trade-off is that
we need much stronger bounds on quantities that are not entirely geometrical (i.e.
the operator norms of Sobolev embeddings and Green’s functions) and on a high
number of derivatives of the torsion.

This necessarily restricts the scope of application of our result, but in certain
situations it yields an improvement on the previously known estimates. In the
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second section of this chapter, we will apply it to the twisted connected sum
construction and show that we can well approximate any number of derivatives.

2.1 A deformation theorem with Ck-estimates

Our deformation theorem is proved in §2.1.3, and relies on a series of uniform
estimates which we derive in §2.1.1 and §2.1.2.

2.1.1 Uniform estimates for compatible connections. The main ingredient
from functional analysis that we need in this part is the Implicit Function Theorem
for analytic maps between Banach spaces [120]. We first recall some definitions.
Let U ⊆ A be an open subset of a Banach space, let B be another Banach space,
and let f : U → B be a map. Let us moreover denote by L(A,B) the Banach
space of bounded linear maps between A and B, and define inductively Lm(A,B) =
L(A,Lm−1(A,B)). It is a classical fact that Lm(A,B), equipped with the operator
norm, is a Banach space isometric to the space of bounded m-linear maps defined
on A and valued in B. The map f is said to be analytic at a point u0 ∈ U if there
exists a family of symmetric multilinear maps fm ∈ Lm(A,B) such that the series∑ ∥fm∥tm has non-zero radius of convergence and f(u) = ∑

m fm(u − u0)m in a
neighbourhood of u0, where we use the notation fmu1 · · ·um (respectively fmu

m)
for fm(u1, . . . , um) (respectively fm(u, . . . , u)). Moreover, f is said to be analytic if
it is analytic everywhere on U , which in particular implies that f is smooth. If A
and B are finite-dimensional, this definition is equivalent to the usual definition of
analytic maps in terms of power series expansions, and most properties of analytic
maps carry out from the finite-dimensional to the Banach space setting.

For our purpose, an especially important class of analytic maps are equivariant
maps. Let (ρ,W ) be a linear representation of GL+(7), and let Υ : Λ3

+R∗
7 → W

be an equivariant map. As GL+(7) acts transitively on Λ3
+R∗

7, the map Υ is
determined by the image of any positive form. In the following two lemmas we
state some useful properties of such maps:

Lemma 2.1. Let Υ : Λ3
+R∗

7 → W be an equivariant map. Then:

(i) The map Υ is analytic.

(ii) Let Υm : Λ3
+R∗

7 → Lm(Λ3R∗
7,W ) be the maps determined by the expansion

Υ(φ+ η) = ∑
m Υm(φ)ηm. Then each Υm is an equivariant map.
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Proof. Fix a positive form φ0 on R7 and identify the stabiliser of φ0 with G2. Let
us pick a direct sum decomposition gl7 ≃ g2 ⊕p, where g2 is the Lie algebra of G2.
Then there exists a neighbourhood U0 of 0 in p such that the map

U0 −→ Λ3
+R∗

7, ξ 7−→ exp(−ξ)∗φ0

is a diffeomorphism onto a neighbourhood V0 of φ0 in Λ3
+R∗

7. The above map is
polynomial and hence analytic, and so is its inverse, which we denote by ξ(φ) for
φ ∈ V0. By equivariance of the map Υ, if φ ∈ V0 we have:

Υ(φ) = Υ(exp(−ξ(φ))∗φ0) = ρ(exp ξ(φ))Υ(φ0) = exp(ρ∗(ξ(φ)))Υ(φ0)

which is analytic in φ, as ξ and exp are analytic. This proves point (i).
For point (ii), let α ∈ GL+(7), φ ∈ Λ3

+R∗
7 and consider a 3-form η ∈ Λ3R∗

7

such that the norm |η|φ is smaller than the radii of convergence of the series
Υ(φ + η) = ∑

m Υm(φ)ηm and Υ((α−1)∗φ + η′) = ∑
m Υm((α−1)∗φ)(η′)m. As

|(α−1)∗η|(α−1)∗φ = |η|φ, we have:

Υ((α−1)∗(φ+ η)) =
∑
m

Υm((α−1)∗φ)((α−1)∗η)m.

On the other hand, since the map Υ is equivariant, we also have:

Υ((α−1)∗(φ+ η)) = ρ(α)Υ(φ+ η) =
∑
m

ρ(α)(Υm(φ)ηm).

By uniqueness of the expansion, we deduce that

Υm((α−1)∗φ)ηm = ρ(α)Υm(φ)(α∗η)m

for all η ∈ Λ3R∗
7. Hence the map Υm : Λ3

+R∗
7 → Lm(Λ3R∗

7,W ) is equivariant under
the action of GL+(7).

We deduce the following adaptation of [64, Lem. 3.1.1]:

Lemma 2.2. Let Υ : Λ3
+R∗

7 → W be an equivariant map, and assume that any
positive form φ ∈ Λ3R∗

7 induces an inner product gW
φ on W such that the map

φ ∈ Λ3R∗
7 → gW

φ ∈ S2
+W

∗ is equivariant. We denote by |u|φ the norm of u ∈ W

relative to the inner product gW
φ , and by |η|φ the norm of η ∈ Λ3R∗

7 relative to the
inner product gφ. Then there exist a sequence of nonnegative numbers a0, a1, a2, . . .

and a constant R > 0 such that the following hold:

(i) If φ is a positive form and η ∈ Λ3R∗
7 satisfies |η|φ ≤ R then φ+η is a positive

form.
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(ii) For any φ ∈ Λ3
+R∗

7 we have:

|Υm(φ)η1 · · · ηm|φ ≤ am|η1|φ · · · |ηm|φ, ∀η1, . . . , ηm ∈ Λ3R∗
7.

(iii) The series ∑ amt
m has radius of convergence greater or equal to R.

Proof. As noted in [66, Def. 10.3.3], there exists a universal constant ϵ > 0 such
that for any positive form φ, if η ∈ Λ3R∗

7 satisfies |η|φ ≤ ϵ then φ + η is also a
positive form. Now let us fix φ0 ∈ Λ3

+R∗
7 and denote by am the operator norm

of Υm(φ0) ∈ Lm(Λ3R∗
7,W ) relative to the norms induced by φ on Λ3R∗

7 and W .
That is, am is the smallest nonnegative number such that

|Υm(φ0)η1 · · · ηm|φ0 ≤ am|η1|φ0 · · · |ηm|φ0 , ∀η1, . . . , ηm ∈ Λ3R∗
7. (2.1)

As Υ is analytic, ∑ amt
m has positive radius of convergence. If φ ∈ Λ3

+R∗
7, then

there exists α ∈ GL+(7) such that φ = (α−1)∗φ0. If η1, . . . , ηm ∈ Λ3R∗
7, we have

|Υm(φ)η1 · · · ηm|φ = |ρ(α)Υm(φ0)α∗η1 · · ·α∗ηm|φ.

As the map φ 7→ gW
φ is equivariant, the corresponding norms on W satisfy

|ρ(α)u|φ = |u|α∗φ = |u|φ0 , ∀u ∈ W.

Thus we deduce from (2.1) that

|Υm(φ)η1 · · · ηm|φ = |Υm(φ0)(α∗η1) · · · (α∗ηm)|φ0

≤ am|α∗η1|φ0 · · · |α∗ηm|φ0 .

Moreover, since φ 7→ gφ is equivariant, we have

|α∗η|φ0 = |η|(α−1)∗φ0 = |η|φ

whence we finally deduce

|Υm(φ)η1 · · · ηm|φ ≤ am|η1|φ · · · |ηm|φ.

Hence the lemma holds if we take R > 0 to be the minimum of ϵ and the radius
of convergence of the series ∑ amt

m.

Remark 2.3. Since any two norms on W are equivalent, the radius of convergence
of the series ∑ amt

m does not depend on the choice of equivariant family of inner
products gW

φ on W , since the coefficients am only depend on this choice up to
multiplication by a positive constant independent of m. Hence we can define R
independently from a particular choice of family of inner products on W .
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The above lemmas will be used in the following way. Let M be an oriented
compact 7-manifold, equipped with its oriented frame bundle, and let E be the
vector bundle associated with the representation (ρ,W ). We assume moreover
that W is endowed with an equivariant family of inner products φ 7→ gW

φ . Then
the equivariant map Υ : Λ3

+R∗
7 → W induces a (possibly nonlinear) bundle map

Υ : Λ3
+T

∗M → E. In the same way, each map Υm : Λ3
+R∗

7 → Lm(Λ3R∗
7,W ) induces

a bundle map Υm : Λ3
+T

∗M → Lm(Λ3T ∗M,E). Hence if φ is a positive form on
M , Υm(φ) is a fully symmetric m-linear map from Λ3T ∗M to E. Moreover, φ
induces a metric hφ on the vector bundle E. If η is a 3-form whose C0-norm
with respect to the Riemannian metric induced by φ is smaller than the radius R
defined in Lemma 2.2, then we have a convergent power series expansion:

Υ(φ+ η) =
∞∑

m=0
Υm(φ)ηm. (2.2)

Note that for any connection ∇ on M compatible with φ (that is, ∇φ = 0), the
tensor Υ(φ) is parallel for the induced connection on E; and in the same way
∇Υm(φ) = 0 for the induced connection on Lm(Λ3T ∗M,E).

From this observation, we may deduce that Υ induces an analytic map between
appropriate Sobolev spaces of sections and provide quantitative estimates for its
radius of convergence. Let us first introduce some notations. Let M and E be
as above, and let φ be a positive form on M , let hφ be the induced metric on E,
and let ∇ be a connection compatible with φ. From this data, we may define the
Sobolev W k,p-norm (p ≥ 1, k ∈ N) of a smooth section u ∈ C∞(E) as:

∥u∥W k,p =
k∑

l=0
∥∇lu∥Lp

where ∥·∥Lp is the Lebesgue norm associated with the Riemannian metric gφ on M
and the metric hφ on E. The Sobolev space W k,p(E) is defined as the completion
of C∞(E) for the W k,p-norm. This is a Banach space. In the same way, one can
define Ck-norms as:

∥u∥Ck =
k∑

l=0
∥∇lu∥C0

and the Banach space Ck(E) is the completion of C∞(E) for this norm. The
Sobolev Embedding Theorem (see for instance [13, App.A,§C,Th.6]) states that
there is a continuous embedding Lp

k ↪→ C l whenever 1
p

≤ k−l
7 .

Let us now fix p ∈ [1,∞) and integers l ≥ 0 and k ≥ 1, satisfying the conditions

l ≥ ⌊k/2⌋, and 1
p

≤ k − l

7 · (2.3)
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The second condition and the Sobolev Embedding Theorem imply that W k,p ⊂
C l ⊆ C0. Hence we can talk about positive forms of regularity W k,p, which are
defined as 3-forms of regularity W k,p such that, as continuous sections, they are
valued in the bundle of positive forms. We denote by W k,p(Λ3

+T
∗M) the set of

such positive forms. Since W k,p(Λ3T ∗M) continuously embeds into C0(Λ3T ∗M),
this is an open subset of the Banach space W k,p(Λ3T ∗M). Moreover, for any φ′ ∈
W k,p(Λ3

+T
∗M), we can define Υ(φ′) at least as a continuous section of E. Let E,

φ, hφ, ∇ be as before, and denote by Ck,p,l,φ,∇ the norm of the Sobolev embedding
W k,p(Λ3T ∗M) ↪→ C l(Λ3T ∗M) (where the W k,p- and C l-norms of differential forms
are defined with respect to ∇ and gφ).

Lemma 2.4. For any m ≥ 0 and any η1, . . . , ηm ∈ W k,p(Λ3T ∗M) we have

∥Υm(φ)η1 · · · ηm∥W k,p ≤ mk+1Cm−1
k,p,l,φ,∇am∥η1∥W k,p · · · ∥ηm∥W k,p .

In particular if U is the ball of radius R/Ck,p,l,φ,∇ centred at φ in W k,p(Λ3
+T

∗M),
then Υ induces an analytic map U → W k,p(E) and the expansion Υ(φ + η) =∑∞

m=0 Υm(φ)ηm converges in this domain.

Proof. To make notations lighter, let us write C = Ck,p,l,φ,∇, so that ∥η∥Cl ≤
C∥η∥W k,p for any 3-form η of regularity W k,p. As the C0-norm is smaller than the
C l norm, Lemma 2.2 implies that if ∥η∥W k,p ≤ R/C then φ+ η is a positive form,
and moreover the expansion:

Υ(φ+ η) =
∞∑

m=0
Υm(φ)ηm (2.4)

is convergent with respect to the C0-norm. To prove that Υ(φ+ η) ∈ W k,p(E), we
want to show that the series also converges with respect to the W k,p-norm.

Let us consider each term Υm(φ)ηm separately. As we noted before, since ∇ is
compatible with φ we have ∇(Υm(φ)) = 0. Let 0 ≤ j ≤ k and let η1, . . . , ηm be
smooth 3-forms. As Υm(φ) is covariantly constant we have:

∇j(Υm(φ)η1 . . . ηm) =
∑

j1+···jm=j

j!
j1! · · · jm!Υm(φ)∇j1η1 · · · ∇jmηm

which yields:

∥∇j(Υm(φ)η1 . . . ηm)∥Lp ≤
∑

j1+···jm=j

j!
j1! · · · jm!∥Υm(φ)∇j1η1 · · · ∇jmηm∥Lp . (2.5)

Let us fix j1, . . . , jm ≥ 0 such that j1 + · · · + jm = j. From Lemma 2.2, we deduce
the following estimate pointwise over M :

|Υm(φ)∇j1η1 · · · ∇jmηm|φ ≤ am|∇j1η1|φ · · · |∇jmηm|φ.
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Let us pick i0 such that ji0 = max{j1, . . . , jm}. As l ≥ ⌊k/2⌋ we have ji ≤ l for all
i ̸= i0, and therefore |∇jiηi|φ is uniformly bounded by ∥ηi∥Cl . Hence we have:

(∫
(|∇j1η1|φ · · · |∇jmηm|φ)pµφ

) 1
p

≤ ∥η1∥Cl · · · ∥∇ji0ηi0∥Lp · · · ∥ηm∥Cl

≤ Cm−1∥η1∥W k,p · · · ∥ηm∥W k,p .

where we use ∥∇ji0ηi0∥Lp ≤ ∥η∥W k,p and the Sobolev embedding W k,p ⊂ C l to
obtain the second inequality. Hence we have the estimate:

∥Υm(φ)∇j1η1 · · · ∇jmηm∥Lp ≤ Cm−1am∥η1∥W k,p · · · ∥ηm∥W k,p .

Reinjecting this inequality into (2.5) and taking into account that the sum of
the multinomial coefficients j!

j1!···jm! over all combinations of j1, . . . jm such that
j1 + · · · jm = j is mj, we finally obtain:

∥∇j(Υm(φ)η1 · · · ηm)∥Lp ≤ mjCm−1am∥η1∥W k,p · · · ∥ηm∥W k,p

and therefore, summing over j = 0, . . . , k:

∥Υm(φ)η1 · · · ηm∥W k,p ≤

 k∑
j=0

mj

Cm−1am∥η1∥W k,p · · · ∥ηm∥W k,p

≤ mk+1Cm−1am∥η1∥W k,p · · · ∥ηm∥W k,p .

The above inequality holds for any smooth 3-forms η1, . . . , ηm, and by density of
C∞(Λ3T ∗M) in W k,p(Λ3T ∗M) we deduce that Υm(φ) induces a bounded m-linear
map W k,p(Λ3T ∗M)×· · ·×W k,p(Λ3T ∗M) → W k,p(E) with operator norm bounded
above by mk+1Cm−1am. As the radius of convergence of the series ∑ amt

m is
bounded below by R > 0, the radius of convergence of the series ∑mk+1Cm−1amt

m

is greater or equal to R/C. Therefore the expansion (2.4) converges in W k,p-norm if
∥η∥W k,p ≤ R/C, and as W k,p(E) is complete this implies that Υ(φ+η) ∈ W k,p(E).
Moreover, if U is the open ball in W k,p(Λ3

+T
∗M) of radius R/C centred at φ, then

the induced map Υ : U → W k,p(E) is analytic.

2.1.2 Uniform estimates for the Levi-Civita connection. In this part, we
let φ be a smooth positive form on the compact manifold M , and let E and hφ be
as before. However, from now on ∇ will be the Levi–Civita connection associated
with φ (which we do not assume to be compatible with φ) and we denote by ∇′ the
canonical connection associated with φ (which is compatible). Recall from §1.1.2
that these connections are related by ∇ = ∇′+τ(φ), where τ(φ) ∈ Ω1(T ∗M⊗TM)
is the torsion of φ. Finally, W k,p

∇ and Ck
∇ will denote the norms defined with respect
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to the connection ∇ and the metrics gφ and hφ, and similarly for ∇′. The norms
W k,p

∇ and W k,p
∇′ are equivalent, and so are Ck

∇ and Ck
∇′ , but for our purpose it is

important to have precise bounds. This is the object of the next lemmas.

Lemma 2.5. Let k ≥ 1. Then there exists a polynomial function Pk with nonneg-
ative coefficients, depending only on the integer k and the representation (ρ,W ),
such that Pk(0) = 0 and for all u ∈ Ck(E) we have

(1 + Pk(∥τ(φ)∥Ck−1
∇

))−1∥u∥Ck
∇′

≤ ∥u∥Ck
∇

≤ (1 + Pk(∥τ(φ)∥Ck−1
∇

))∥u∥Ck
∇′
.

Proof. If u is a smooth section of E we have

∇u = ∇′u+ τ ρ(φ) · u (2.6)

where we wrote τ ρ(φ) = ρ∗(τ(φ)) ∈ Ω1(End(E)). By an easy induction, we deduce
that for any k ≥ 1 there is a formula of the type

∇ku = (∇′)ku+
∞∑

m=1

∑
j1+···jm+l≤k−1

Ak,m,j1···jm,l∇j1τ ρ(φ) · · · ∇jmτ ρ(φ) · (∇′)lu

where Ak,m,j1...jm,l are some combinatorial coefficients, which for a given k vanish
identically when m is large enough, so that the sum is finite. Moreover we can
write ∇jτ ρ(φ) = ρ∗∇jτ(φ) as a section of (T ∗M)⊗j ⊗ End(E), and thus there are
constants Bj1...jm,l depending only on the representation (ρ,W ) such that

|∇j1τ ρ(φ) · · · ∇jmτ ρ(φ) · (∇′)lu|φ ≤ Bj1...jm,l|∇j1τ(φ)|φ · · · |∇jmτ(φ)|φ|(∇′)lu|φ
≤ Bj1...jm,l∥τ(φ)∥m

Ck−1
∇

|(∇′)lu|φ

everywhere on M . Taking the supremum over M we obtain an inequality

∥u∥Ck
∇

≤ (1 + Pk(∥τ(φ)∥Ck−1
∇

))∥u∥Ck
∇′

for some polynomial Pk with nonpositive coefficients depending only on the choice
of representation and such that Pk(0) = 0. For the other inequality, we may use
the identity (2.6) and an induction to find a formula of the form

(∇′)ku = ∇ku+
∞∑

m=1

∑
j1+···jm+l≤k−1

A′
k,m,j1···jm,l∇j1τ ρ(φ) · · · ∇jmτ ρ(φ) · ∇lu

where for a given k the coefficients A′
k,m,j1···jm,l vanish identically when m is large

enough, and apply the same reasoning.

Remark 2.6. The point here is that Pk does not depend on the manifold M or the
G2-structure φ. In that sense, this bound is universal.
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Lemma 2.7. Let k ≥ 1. Then there exists a polynomial function Qk with nonneg-
ative coefficients, depending only on the integer k and the representation (ρ,W ),
such that Qk(0) = 0 and for all u ∈ W k,p(E) we have

(1 +Qk(∥τ(φ)∥Ck−1
∇

))−1∥u∥W k,p

∇′
≤ ∥u∥W k,p

∇
≤ (1 +Qk(∥τ(φ)∥Ck−1

∇
))∥u∥W k,p

∇′
.

Proof. The proof is exactly the same as for the previous lemma, except that we
integrate instead of taking the supremum.

Since the torsion τ(φ) is represented by (dφ, dΘ(φ)) we immediately obtain the
following consequences:

Corollary 2.8. Let k ≥ 1. Then there is a constant ϵk > 0, depending only on the
integer k and the representation (ρ,W ), such that if ∥dφ∥Ck−1

∇
+ ∥dΘ(φ)∥Ck−1

∇
≤ ϵk

then for all u ∈ Ck(E)

2−1∥u∥Ck
∇′

≤ ∥u∥Ck
∇

≤ 2∥u∥Ck
∇′
.

Corollary 2.9. Let k ≥ 1. Then there is a constant ϵ′
k > 0, depending only on the

integer k and the representation (ρ,W ), such that if ∥dφ∥Ck−1
∇

+ ∥dΘ(φ)∥Ck−1
∇

≤ ϵ′
k

then for all u ∈ W k,p(E)

2−1∥u∥W k,p

∇′
≤ ∥u∥W k,p

∇
≤ 2∥u∥W k,p

∇′
.

Let us now consider as before a bundle map Υ : Λ3
+T

∗M → E induced by an
equivariant map Υ : Λ3

+R∗
7 → W . We also fix p ∈ (1,∞) and integers l ≥ 0, k ≥ 1

such that conditions (2.3) (which we recall below) hold:

l ≥ ⌊k/2⌋, and 1
p

≤ k − l

7 ·

Then we can adapt Lemma 2.4 to Sobolev norms defined with respect to the
Levi-Civita connection of gφ for G2-structures with small torsion:

Lemma 2.10. There is a universal constant ϵk,l, depending only on the integers
k, l and the representation (ρ,W ), such that the following holds. Assume that
∥dφ∥Ck−1

∇
+∥dΘ(φ)∥Ck−1

∇
≤ ϵk,l and let Ck,p,l,φ be the norm of the Sobolev embedding

W k,p(Λ3T ∗M) ↪→ C l(Λ3T ∗M) with respect to the norms W k,p
∇ and C l

∇. Then for
any m ≥ 0 and any η1, . . . , ηm ∈ W k,p(Λ3T ∗M) we have

∥Υm(φ)η1 · · · ηm∥W k,p
∇

≤ 8mmk+1Cm−1
k,p,l,φam∥η1∥W k,p

∇
· · · ∥ηm∥W k,p

∇
.

In particular the radius of convergence of the expansion Υ(φ+η) = ∑∞
m=0 Υm(φ)ηm

with respect to the W k,p
∇ -norms is greater or equal to R/(8Ck,p,l,φ).

36



Proof. Let ϵk,l > 0 be smaller than the constants ϵ′
k,Λ3 , ϵ′

k,W provided by Corollary
2.9 for the representations Λ3R∗

7 and (ρ,W ) and than the constant ϵl,Λ3 associated
with the representation Λ3R∗

7. Assume that ∥dφ∥Ck−1
∇

+ ∥dΘ(φ)∥Ck−1
∇

≤ ϵk,l. By
Lemma 2.4, we know that

∥Υm(φ)η1 · · · ηm∥W k,p

∇′
≤ mk+1Cm−1

k,p,l,φ,∇′am∥η1∥W k,p

∇′
· · · ∥ηm∥W k,p

∇′
.

Now as ∥τ(φ)∥Ck−1 ≤ ϵ′
k,Λ3 , ϵ′

k,W we have

∥ηj∥W k,p

∇′
≤ 2∥ηj∥W k,p

∇

and
∥Υm(φ)η1 · · · ηm∥W k,p

∇′
≤ 2∥Υm(φ)η1 · · · ηm∥W k,p

∇

and therefore we deduce

∥Υm(φ)η1 · · · ηm∥W k,p
∇

≤ 2m+1mk+1Cm−1
k,p,l,φ,∇′am∥η1∥W k,p

∇
· · · ∥ηm∥W k,p

∇
.

Now we need to control the Sobolev constant Ck,p,l,φ,∇′ by Ck,p,l,φ. Since ∥τ(φ)∥Cl−1 ≤
ϵl,Λ3 , for any η ∈ W k,p(Λ3T ∗M) we have

∥η∥Cl
∇′

≤ 2∥η∥Cl
∇

≤ 2Ck,p,l,φ∥η∥W k,p
∇

≤ 4Ck,p,l,φ∥η∥W k,p

∇′

whence Ck,p,l,φ,∇′ ≤ 4Ck,p,l,φ. Thus 2m+1Cm−1
k,p,l,φ,∇′ ≤ 2m+1 ·22m−2Ck,p,l,φ ≤ 8mCk,p,l,φ

which yields the desired inequality. The rest of the lemma easily follows.

In the next paragraph, we shall be considering the equivariant map Θ : Λ3
+R∗

7 →
Λ4R∗

7, and the radius of convergence R and the uniform constants ϵk, ϵ′
k and ϵk,l

will implicitly be the ones associated with Θ and the natural representation of
GL+(7) on Λ4R∗

7. If (M,φ) is a compact manifold endowed with a G2-structure
and η ∈ Ω3(M) satisfies ∥η∥C0 ≤ R, then φ+ η is a positive form and

Θ(φ+ η) =
∞∑

m=0
Θm(φ)ηm = Θ(φ) + Lφ(η) + Fφ(η)

where Lφ(η) = Θ1(φ)η = 4
3 ∗ π1(η) + ∗π7(η) − π27(η) and Fφ(η) = ∑∞

m=2 Θm(φ)ηm

(see (1.4)). For the applications of this chapter we will not need to control the full
expansion; instead we will use the following consequence:

Corollary 2.11. For any constant A > 0, there exists a universal constant δk,l,A >

0, depending only on A and the integers k, l, such that if ∥dφ∥Ck−1
∇

+∥dΘ(φ)∥Ck−1
∇

≤
ϵk,l and ∥η1∥W k,p

∇
, ∥η2∥W k,p

∇
≤ δk,l,A/Ck,p,l,φ then

∥Fφ(η1) − Fφ(η2)∥W k,p
∇

≤ ACk,p,l,φ∥η1 − η2∥W k,p
∇

(∥η1∥W k,p
∇

+ ∥η2∥W k,p
∇

).
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Proof. Let us take ∥η1∥W k,p
∇
, ∥η2∥W k,p

∇
< δ/Ck,p,l,φ where δ < R/8 is to be deter-

mined later. Then we have

Fφ(η1) − Fφ(η2) =
∞∑

m=2
Θm(φ)ηm

1 − Θm(φ)ηm
2

=
∞∑

m=2

m−1∑
j=0

Θm(φ)(η1 − η2)ηj
1η

m−1−j
2 .

By the previous corollary we have estimates on each term:

∥Θm(φ)(η1 − η2)ηj
1η

m−1−j
2 ∥W k,p

∇
≤ 8mmk+1Cm−1

k,p,l,φam∥η1 − η2∥W k,p
∇

∥η1∥j

W k,p
∇

∥η2∥m−1−j

W k,p
∇

≤ 8mmk+1Ck,p,l,φδ
m−2am∥η1 − η2∥W k,p

∇
(∥η1∥W k,p

∇
+ ∥η2∥W k,p

∇
).

From this we deduce that

∥Θm(φ)ηm
1 −ψm(φ)ηm

2 ∥W k,p
∇

≤ 8mmk+2Ck,p,l,φδ
m−2am∥η1−η2∥W k,p

∇
(∥η1∥W k,p

∇
+∥η2∥W k,p

∇
).

As the series ∑m 8mmk+2am has nonzero radius of convergence, we can choose
0 < δk,l,A < R/8 such that

∞∑
m=2

8mmk+2amδ
m−2
k,l,A ≤ A

which satisfies the desired property.

2.1.3 The deformation theorem. Let us now outline the deformation argu-
ment argument of Joyce [66, §10.3] for constructing torsion-free G2-structures.
The starting point is to consider a compact manifold M7 equipped with a closed
G2-structure φ with small torsion, and seek a nearby torsion-free G2-structure
φ̃ = φ + dη in the same cohomology class. In [66, Theorem 10.3.7], Joyce proved
that there exists a universal constant ε0 > 0 (which we might assume to be smaller
that the radius of convergence R previously defined) which does not depend on M
or φ such that:

Theorem 2.12 (Joyce). Let (M,φ) be a compact manifold equipped with a closed
G2-structure. Suppose ϖ is a 2-form on M such that ∥dϖ∥C0 ≤ ε0 and ψ a 4-form
on M such that dΘ(φ) = dψ and ∥ψ∥C0 ≤ ε0. If (ϖ,ψ) satisfy:

∆ϖ + d∗
((

1 + 1
3⟨dϖ, φ⟩

)
ψ
)

+ ∗dFφ(dϖ) = 0

then φ̃ = φ+ dϖ is a torsion-free G2-structure on M .
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In the remainder of this part, we use this theorem together with the uniform es-
timates of §2.1.2 to prove that provided φ is a closed G2-structure with sufficiently
small torsion in the Ck sense and we can choose ψ with small W k+1,p Sobolev
norm (for p ≥ 7), then φ can be deformed to a Ck-close torsion-free G2-structure
within the same cohomology class. Note that from now on, all Sobolev norms on
(M,φ) will be defined with respect to the Levi-Civita connection of gφ and will
be denoted by W k,p instead of W k,p

∇ , and similarly for Ck norms. Our argument is
based on the following standard fixed-point theorem whose proof will be omitted:

Proposition 2.13. Let (A1, ∥ · ∥1), (A2, ∥ · ∥2) be Banach spaces and f : Bδ ⊂
A1 → A2 be a continuous map defined on the ball of radius δ centred at 0 which
can be written as

f(u) = f(0) + L(u) + F (u)

where L : A1 → A2 is a bounded linear map which has a bounded inverse and
F : Bδ → A2 is a continuous map such that

∥F (u1) − F (u2)∥2 ≤ C∥u1 − u2∥1(∥u1∥1 + ∥u2∥1)

for some constant C > 0. Let Q be the operator norm of L−1 and assume that the
following inequalities hold:

Q|f(0)| < δ/2, CQδ ≤ 1/4.

Then there is a unique u ∈ Bδ such that f(u) = 0, and moreover

∥u∥1 ≤ 2Q∥f(0)∥2.

We shall now prove the following theorem:

Theorem 2.14. Let k, l ≥ 1 and p ∈ (1,∞) satisfy the following conditions:

l ≥ 1 + ⌊k/2⌋ and 1
p

≤ k + 1 − l

7 ·

Then there exist a universal constant κ ≥ 1 and a constant ε = εk,l,p > 0 depending
only on k, l and p such that the following holds.

Let (M,φ) be a compact 7-manifold endowed with a closed G2-structure, and
suppose that ∥dΘ(φ)∥Ck ≤ ϵk+1,l. Assume moreover that ψ is a 4-form such that
dΘ(φ) = dψ and ∥ψ∥C0 ≤ ϵ0, where ε0 is the constant of Theorem 2.12. Let us
moreover denote by:

• Q = Qk,φ the operator norm of the Green’s function G∆ of the Laplacian,
G∆ : H 2(M,φ)⊥ ∩W k,p(Λ2T ∗M) → H 2(M,φ)⊥ ∩W k+2,p(Λ2T ∗M).
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• C = sup{Ck,p,l−1,φ, Ck+1,p,l,φ} the maximum of the norms of the Sobolev em-
beddings W k,p(Λ•T ∗M) ↪→ C l−1(Λ•T ∗M) and W k+1,p(Λ•T ∗M) ↪→ C l(Λ•T ∗M).

Then if the inequality

C(1 +Q(1 +Q+ C))(1 + C∥dψ∥W k,p)∥ψ∥W k+1,p ≤ ε

holds, there exists a co-exact 2-form ϖ with ∥ϖ∥W k+2,p ≤ 8κQ∥ψ∥W k+1,p such that
φ̃ = φ+ dϖ is torsion-free. Moreover ∥φ̃− φ∥Cl ≤ 4κ2QC∥ψ∥W k+1,p.

Remark 2.15. We might in particular choose k = l ≥ 1 and p ≥ 7 in this theorem.
Therefore, a control on the Ck-norm of the torsion and on the W k+1,p-norm of ψ
yields a Ck-estimate on φ̃− φ. The main reason to allow k, p and l to satisfy the
more general conditions of the theorem is that it allows us to work with p = 2 if
k+ 1 − l is large enough. This sometimes simplify the analysis since L2-spaces are
in general better behaved than other Lp-spaces. In fact this will not play a role in
our application to twisted connected sums in the next section since the analytical
results of Chapter 3 will be valid in the Lp-range for any p ∈ (1,∞).

We shall make a few comments and introduce some notations before proving
this theorem. Firstly, let us comment on the restrictions on k, l and p. We
require 1

p
≤ k+1−l

7 in order to have the Sobolev embeddings W k+1,p ↪→ C l and
W k,p ↪→ C l−1. Moreover, the condition l ≥ 1 + ⌊k/2⌋ implies both l − 1 ≥ ⌊k/2⌋
and l ≥ (k + 1)/2; this allows us to use Corollary 2.11 for the triples (k + 1, l, p)
and (k, l− 1, p). In fact we will only directly use this corollary for (k+ 1, l, p), and
an adaptation of its proof for (k, l − 1, p).

Secondly, because the Levi-Civita connection ∇ of gφ is torsion-free, the ex-
terior differential d : Ω•(M) → Ω•(M) coincides with the antisymmetrisation of
∇ : Ω•(TM) → C∞(T ∗M ⊗ Λ•T ∗M) (up to a combinatorial constant depend-
ing on the degree of forms). Hence there exists a universal constant κ such that
|dη| ≤ κ|∇η| for any η ∈ Ω•(M). Me might assume κ ≥ 1. Moreover, the Hodge
operator ∗ is an isometry of the exterior algebra Λ•T ∗M , whence |d∗η| ≤ κ|∇η|
for the same constant. This implies uniform estimates ∥dη∥W k,p ≤ κ∥η∥W k+1,p , and
similarly with C l-norms and if we replace d by d∗.

Proof of Theorem 2.14. The idea is to apply Proposition 2.13 to the function

f(ϖ) = d∗ψ + ∆ϖ + 1
3d

∗ (⟨dϖ, φ⟩ψ) + ∗dFφ(dϖ)

defined on a ball Bδ1 of radius δ1 = δk+1,l,1
κC

centred at 0 in the Banach space
H 2(M,φ)⊥ ∩W k+2,p(Λ2T ∗M) and taking values in H 2(M,φ)⊥ ∩W k,p(Λ2T ∗M).
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Here δk+1,l,1 is the constant of Corollary 2.11 for A = 1. Our choice of δ1 is made
to ensure that ∥dϖ∥W k+1,p ≤ δk+1,l,1 if ϖ ∈ Bδ1 . In the notations of Proposition
2.13, f(0) = d∗ψ, L(ϖ) = ∆ϖ + 1

3d
∗ (⟨dϖ, φ⟩ψ) and F (ϖ) = ∗dFφ(dϖ).

Let us begin with a quadratic estimate on F . If ∥ϖ1∥W k+2 , ∥ϖ∥W k+2 ≤ δ1 then

∥ ∗ dFφ(dϖ1) − ∗dFφ(dϖ2)∥W k,p ≤ κ∥Fφ(dϖ1) − Fφ(dϖ2)∥W k+1,p

≤ κ2C∥ϖ1 −ϖ2∥W k+2,p(∥ϖ1∥W k+2,p + ∥ϖ2∥W k+2,p)

where the second inequality follows from Corollary 2.11.
Now we want to estimate the norm of the inverse of the linear map L. Since

L(ϖ) = ∆(ϖ+ 1
3G∆d

∗(⟨dϖ, φ⟩ψ), any condition ensuring that the norm K of the
linear map ϖ → 1

3d
∗(⟨dϖ, φ⟩ψ)) satisfies 2KQ ≤ 1 implies that L is invertible

with ∥L−1∥ ≤ 2Q. Now we have the inequality

∥d∗(⟨dϖ, φ⟩ψ))∥W k,p ≤ κ∥⟨dϖ, φ⟩ψ∥W k+1,p .

In order to estimate the norm on the second line, we might use the Sobolev em-
beddings W k+1,p ↪→ C l and W k,p ↪→ C l−1 as in the proof of Lemma 2.4. When
calculating the covariant derivatives of ⟨dϖ, φ⟩ψ, we encounter two types of terms.
The terms of the first type are of the form ⟨∇j1dϖ, φ⟩∇j3ψ; such terms have
|⟨∇j1dϖ, φ⟩∇j3ψ| ≤ 7|∇j1dϖ|φ · |∇j3ψ| (since |φ|φ = 7) and j1 + j3 ≤ k+ 1. They
can be estimated using the Sobolev embedding W k+1,p ↪→ C l as in the aforemen-
tioned lemma. The second type are terms of the form ⟨∇j1dϖ,∇j2φ⟩∇j3ψ where
j2 ̸= 0. Since ∇φ is essentially the torsion of φ which is represented by dΘ(φ) = dψ,
these terms admit the bound |⟨∇j1dϖ,∇j2φ⟩∇j3ψ|φ ≤ κ′|∇j1ϖ|·|∇j2−1dψ|φ·|∇j3ψ|
for some universal constant κ′. Here j1 + (j2 − 1) + j3 ≤ k and we can estimate
these terms using the embedding W k,p ↪→ C l−1 this time. Hence we obtain

∥d∗(⟨dϖ, φ⟩ψ))∥W k,p ≤ κ′′C∥ϖ∥W k+2,p∥ψ∥W k+1,p(1 + C∥dψ∥W k,p).

for some universal constant κ′′. Therefore if

2κ′′QC∥ψ∥W k+1,p(1 + C∥dψ∥W k,p) ≤ 1

then L is invertible and ∥L−1∥ ≤ 2Q. This condition will be satisfied provided the
constant ε in the statement of the theorem is chosen to be small enough.

Assuming that this is the case, let us define δ = 8κQ∥ψ∥W k+1,p . Then

∥L−1∥∥d∗ψ∥W k,p ≤ 2Qκ∥ψ∥W k+1,p = δ/4 < δ/2 (2.7)

41



and hence δ satisfies the first condition of Proposition 2.13. For δ to be smaller
than δ1, we need to have

8κ2QC∥ψ∥W k+1,p ≤ δk+1,l,p.

This is also satisfied if ε is small enough. Finally, the second condition in Propo-
sition 2.13 reads

2Q · κ2C · 8κQ∥ψ∥W k+1,p = 16κ3Q2C∥ψ∥W k+1,p ≤ 1/4

which is also implied by the condition of the theorem provided we chose a small
enough ε > 0.

We might therefore apply Proposition 2.13 for δ = 8κQ∥ψ∥W k+1,p since κ ≥ 1.
Hence f(ϖ) = 0 has a unique solution such that ∥ϖ∥W k+2,p ≤ δ, which must more-
over satisfy ∥ϖ∥W k+2,p ≤ 4Q∥d∗ψ∥W k,p ≤ 4κQ∥ψ∥W k+1,p . Hence ∥dϖ∥W k+1,p ≤
4κ2Q∥ψ∥W k+1,p and by the Sobolev embedding W k+1,p ↪→ C l we deduce that
∥dϖ∥Cl ≤ 4κ2QC∥ψ∥W k+1,p . To apply the theorem of Joyce, it remains to prove
that ϖ is smooth. The main observation is that f , seen as a second-order partial
differential operator, is quasilinear, that is, it is linear in the second-order deriva-
tives (represented by ∇dϖ). Moreover the linearisation at 0 just the Laplacian ∆,
and because this is an open property the linearisation of f at ϖ will be elliptic if
the C1-norm of ϖ is smaller than a certain universal constant. Given that l ≥ 1
and ∥ϖ∥Cl ≤ 4κ2QC∥ψ∥W k+1,p ≤ 4κ2ε this condition will hold if ε is small enough.
Thus we might use a classical bootstrap argument to prove that ϖ is smooth.

2.2 Improved estimates for the twisted connected
sum construction

We now turn our attention to the construction of compact G2-manifolds by twisted
connected sum. It was first developed by Kovalev [80], and subsequently fixed1

by Corti–Haskins–Nordström–Pacini [29] and further extended by Crowley and
Nordström [34, 97]. The main result of this section is the Ck-estimate of Propo-
sition 2.16, which is an application of Theorem 2.14 together with estimates on
the Green’s function of the Laplacian that we will derive in Chapter 3, in a much
more general setting.
1The original construction contained a number of geometric caveats which were addressed in the
cited work. In fact, the analysis developed in [80], which partially relies on an adaptation of
[81], is also erroneous (although one can use Joyce’s general existence results to bypass it). The
results of the next chapter provide a way to fix the analytical aspects of the construction, in
addition to improving the known estimates.
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ϕ
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1 ρ = t +∞

ϕ∗g = gY +O(e−µt)

Figure 2.1: An EAC manifold.

2.2.1 Asymptotically cylindrical manifolds. Let us recall a few standard
definitions, starting with the notion of Exponentially Asymptotically Cylindrical
(EAC) manifold. Let Z be an oriented non-compact manifold of dimension n and
X an oriented compact manifold of dimension n− 1. We say that Z is asymptotic
to the cylinder Y = R × X at infinity if there exist a compact K ⊂ Z and
an orientation-preserving diffeomorphism ϕ : (0,∞) × X → Z\K. The compact
manifold X is called the cross-section of Z. It will often be useful to pick a positive
function ρ : Z → R such that ρ(ϕ(t, x)) = t for (t, x) ∈ [1,∞) × X and ρ < 1
outside of ϕ([1,∞) × X). Following the terminology of [56], we will call such
function a cylindrical coordinate function.

We say that a Riemannian metric g on Z is EAC of rate µ > 0 if we have, for
all integers l ≥ 0:

|∇l
Y (ϕ∗g − gY )|gY

= O
(
e−µt

)
(2.8)

as t → ∞, where gY = dt2 + gX is a cylindrical metric on Y = R × X, ∇Y the
associated Levi-Civita connection and |·|gY

the associated norm on tensor bundles.
The notion of EAC manifold can be refined in the case of metrics with special

holonomy. An EAC G2-manifold (Z, φ) of rate µ > 0 is required to satisfy

ϕ∗φ = φ0 + η, |∇l
Y η|gY

= O(e−µt) ∀l ≥ 0

as t → ∞, where φ0 is a translation-invariant torsion-free G2-structure on R×X.
The cross-section X is then a Calabi–Yau threefold, and has a unique Calabi–Yau
structure (ω0,Ω0) such that φ0 = dt ∧ ω0 + Re Ω0. In this case, we may assume
that the metric gX is induced by (ω0,Ω0).
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2.2.2 Twisted connected sums. Let us now outline the twisted connected sum
construction. The building blocks are a pair of EAC G2-manifolds (Z1, φ1) and
(Z2, φ2) of rate µ > 0, asymptotic to a cylinder R ×X. Let us denote by φ0,i the
asymptotic translation-invariant model for φi. The G2-structures φ1 and φ2 are
said to be matching if there exists an isometry γ of the cross-section X such that
the map

γ : R ×X → R ×X, (t, x) 7→ (−t, γ(x))

satisfies γ∗φ0,2 = φ0,1. If γ0,i = dt ∧ ω0,i + Re Ω0,i for Calabi-Yau structures
(ω0,i,Ω0,i) on X, the matching condition amounts to:

γ∗ω0,2 = −ω0,1, γ∗ Re Ω0,2 = Re Ω0,1. (2.9)

In all known examples [80, 30, 97], such matching pairs are trivial circle bundles
over EAC Calabi–Yau threefolds (or quotients thereof in the case of Nordström’s
‘extra-twisted’ connected sum), and the cross-section is isometric to the product
of a K3 surface with a flat 2-torus (or the corresponding quotients). Much of
the subtlety of the construction lies in the choice of isometry γ, which is usually
designed so that compact manifold obtained by gluing Z1 and Z2 along γ has finite
fundamental group in order to construct manifolds with full holonomy G2. These
details go beyond the scope of the present chapter and do not affect our analysis,
so we refer to the original papers for more information. In fact one could also do
an ‘untwisted’ connected sum, resulting in a compact manifold which is globally
a trivial circle bundle, and by dimensional reduction this yields a construction of
compact Calabi–Yau threefolds.

Let us denote by σ the minimum of µ and of the square roots of the smallest
non-trivial eigenvalues of the Laplacian acting on 2- and 3-forms on X, and pick
diffeomorphisms ϕi : (0 × ∞) × X → Zi\Ki of the cylindrical ends. The closed
forms φi and Θ(φi) admit an expansion:

ϕ∗
iφi = φi,0 + dηi, ϕ∗

i Θ(φi) = Θ(φi,0) + dξi

where ηi ∈ Ω2((0,∞) ×X), ξi ∈ Ω3((0,∞) ×X) and all their covariant derivatives
have exponential decay in O(e−δt) as t → ∞, for any 0 < δ < σ (see §3.4.1). Let
us pick a smooth cutoff function χ : R → [0, 1] such that χ ≡ 0 in (−∞,−1

2 ] and
χ ≡ 1 in [1

2 ,∞). Then we can build 1-parameter families of closed forms:

φi,T = φi − d(χ(ρi − T )(ϕ−1
i )∗ηi), Θi,T = Θ(φi) − d(χ(ρi − T )(ϕ−1

i )∗ξi)

where ρi are cylindrical coordinate functions on Zi. For T large enough φi,T is a
G2-structure on Zi, which is closed by construction. Then we can build a family
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of compact manifolds {(MT , φT )}T ∈[T0,∞) in the following way. To construct MT ,
we can glue the domains {ρi ≤ T + 2} ⊂ Zi along the annuli {T ≤ ρi ≤ T + 2} ≃
[−1, 1] ×X using the identification

ϕ1(T + 1 + t, x) ∼ ϕ2(T + 1 − t, γ(x)), ∀(t, x) ∈ [−1, 1] ×X. (2.10)

Since the matching conditions (2.9) are satisfied, we can patch up φ1,T with φ2,T

in order to obtain a closed G2-structure φT on MT . Similarly, patching up Θ1,T

with Θ2,T we obtain a closed 4-form ΘT . Let us write ψT = Θ(φT ) − ΘT , so that
dψT = dΘ(φT ). By construction, we have estimates of the form:

∥ψT ∥Ck + ∥dΘ(φT )∥Ck = O
(
e−δT

)
(2.11)

for any k ≥ 0 and 0 < δ < σ, and since ψT and dΘ(φT ) are supported in the
gluing region which has uniformly bounded volume this induces similar estimates
for any W k,p-norms [80, Lemma 4.25]. It follows from [66, Theorem 11.6.1] that
for T large enough there is a torsion-free G2-structure φ̃T cohomologous to φT and
such that ∥φ̃T − φT ∥C0 = O(e−δT ) for any δ > 0 small enough.

In the next chapter, we will see that the norm of the Sobolev embeddings
W k,p ↪→ C l (in the range where these embeddings are well-defined and continuous)
are uniformly bounded (Proposition 3.5), and that the norm of the Green’s function
of the Laplacian is bounded above by O(T 2) (Corollary 3.38). Hence Theorem
2.14 yields the following improved estimates with control on an arbitrary number
of derivatives:

Proposition 2.16. Let k ∈ N and 0 < δ < σ. Then there exists a constant C > 0
such that for T large enough:

∥φ̃T − φT ∥Ck ≤ Ce−δT .

With these estimates, we can approximate the Laplacian operator associated
with φ̃T by the Laplacian operator associated with φT . In particular, the spec-
tral estimates which we will derive in the next chapter (Theorem 3.8), using the
‘unperturbed’ metric gφT

, also apply to the metric gφ̃T
. In Remark 3.9 we will

mention some physical consequences of this result, in relation to the swampland
distance conjecture discussed in the introduction.
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Chapter 3

Spectral properties of twisted
connected sums

This chapter, whose material appears in the article [82] by the author, is con-
cerned with the analysis of differential operators for a class of ‘neck-stretching’
problems where two exponentially asymptotically cylindrical (EAC) manifolds are
glue together in order to form a family of compact manifolds whose diameter goes
to infinity. A typical example of such situation is the twisted connected sum con-
struction of compact G2-manifolds which we saw in the previous chapter (Section
2.2). Our original motivation came from the swampland distance conjecture in
physics (see the introduction): along such deformations, physicists expect an in-
finite number of eigenvalues of the Laplacian acting on differential forms (which
physically correspond to a mass spectrum) to decay at the same rate1. Hence an
interesting question is to understand precisely the asymptotic behaviour of the
Laplacian in the neck-stretching limit.

This type of neck-stretching problems has many applications beyond twisted
connected sums in various branches of analysis, geometry, topology and mathe-
matical physics (see for instance the review [47]). It has notably been used for
proving index theorems for manifolds with boundary [9] or corners [57], and the
analysis of such problems is closely related to the analysis of differential operators
on noncompact manifolds (e.g. Lockhart–McOwen theory for EAC manifolds [89],
or Melrose’s general theory of b-calculus [93]). Concerning the spectral aspects,
a very precise development of the asymptotic behaviour of the eigenvalues of the
scalar Laplacian was notably obtained by Grieser [46] in the case of manifolds
connected by neck regions which are exact cylinders.
1Physicists expect that this is the typical behaviour for infinite-distance limits in the moduli
space. Twisted connected sums are an example of such infinite-distance limits for the volume
diverges to infinity in the neck-stretching limit (see §4.1.1, and also Lemma 4.18).

46



In the present chapter, we develop a general method to analyse the mapping
properties of a class of adapted differential operators in the neck-stretching limit
of a connected sum of two EAC manifolds. Our method is relatively elementary
in two ways: first, we only use the classical Lockhart–McOwen theory and some
results on the analysis on Riemannian cylinders without appealing to more sophis-
ticated machinery (like b-calculus), which allows us to give a mostly self-contained
exposition; and second we work with unweighted Sobolev spaces on the family of
compact manifolds. Let us briefly justify this choice. In degenerate limits, it is
classical to introduce weighted Sobolev spaces in order to find a Fredholm inverse
for the relevant differential operator with uniformly bounded norm. However, in
applications it is not necessarily a problem if the operator norm of a Fredholm
inverse diverges, as long as its growth rate remains under control. The real is-
sue is to identify the right notion of substitute kernel and cokernel, and to build
a Fredholm inverse which is close to being an actual inverse on the complement
of those. This involves a rather delicate ‘matching problem’ for the obstructions
coming from each of the pieces which are glued together, and this problem does
not have anything to do with a particular choice of weight2. A second reason for
working with unweighted spaces is that we will be interested in the eigenvalues of
the Laplacian, which are more directly related to the estimates in the L2-range.

Let us now outline the plan for this chapter. In Section 3.1 we describe the
general gluing problem that we are interested in, define the notions of adapted
operators and of substitute kernel and cokernel that we will be working with, and
state our main results. Section 3.2 is concerned with the analysis of translation-
invariant PDEs on cylinders and contains the main technical ingredients underly-
ing our proofs. Section 3.3 is dedicated to the analysis of the mapping properties
of adapted operators in the neck-stretching limit. Under some assumptions, we
prove a theorem on the invertibility of adapted operators (Theorem 3.6), but our
method is more general and we also comment on how to adapt it in different con-
texts. Finally, in Section 3.4 we apply our techniques to the study the asymptotic
behaviour of the low eigenvalues of the Laplacian.
2This is notably an issue in Kovalev’s analysis for the twisted connected sum construction [80]. In
this case, the relevant operator is the Laplacian, and the actual obstructions are topological by
Hodge theory; but by introducing weights we obtain an approximate inverse for the Laplacian
where the substitute kernel and cokernel have the wrong dimension. This issue can be solved
by using the analytical framework developed in this chapter.
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3.1 The neck-stretching problem

In this section we explain our setup and formulate the main results of this chap-
ter. The gluing problem under consideration is described in §3.1.1, in which we
introduce the building blocks and the class of adapted operators that we are inter-
ested in. In §3.1.2 we motivate and introduce the notions of substitute kernel and
cokernel for adapted operators, following ideas present for instance in [69, 71] or
[81]. Our main results are discussed in §3.1.3, where we also outline our strategy
of proof.

3.1.1 Model gluing problem. Let (Z, g) be an exponentially asymptotically
cylindrical (EAC) manifold of rate µ > 0 (see §2.2.1). By definition, there is a
compact subset K ⊂ Z and a diffeomorphism ϕ : (0,∞) × X → Z\K, where
the cross-section X is a compact manifold endowed with a metric gX , and ϕ∗g =
gY + O(e−µt) where gY = dt2 + gX on the cylinder Y = R × X (and similar
estimates hold for derivatives of any degree). We can also pick a smooth cylindrical
coordinate function ρ > 0 on Z such that ρ(ϕ(t, x)) = t for any t ≥ 1 and x ∈ X.

Given the above data, we may define a notion of adapted bundle as follows.
Any vector bundle E0 → X equipped with a metric h0 and a connection ∇0 can
be extended to a vector bundle E0 → Y with translation-invariant metric and
connection (h0,∇0) (see Section 3.2 for more details). We call such bundles on Y

translation-invariant vector bundles. Let E → Z be a vector bundle on Z, endowed
with a metric h and a connection ∇. We say that E is an adapted bundle on (Z, g)
if there exist a translation-invariant vector bundle (E0, h0,∇0) on Y and a bundle
isomorphism ΦE : E0|(0,∞)×X → E|Z\K covering ϕ, such that for all integers l ≥ 0:

|∇l
0(Φ∗

Eh− h0)|0 = O(e−µt), and |∇l
0(Φ∗

E∇ − ∇0)|0 = O
(
e−µt

)
(3.1)

as t → ∞, where | · |0 is the norm induced by the metrics gY and h0.

Remark 3.1. In this chapter, we will consider complex vector bundles endowed with
hermitian metrics for convenience, but the results of course apply to real vector
bundles by taking their complexification.

We may also define the notion of adapted differential operator between adapted
bundles. Let E, F be adapted bundles on Z and P : C∞(E) → C∞(F ) be a
differential operator of order k ≥ 1. If u is a smooth section of E0 defined over
the half-cylinder (0,∞), let:

P̃ u = Φ−1
F PΦEu. (3.2)
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This defines a differential operator P̃ : C∞(E0) → C∞(F 0) over the cylinder
(0,∞)×X, modelling the action of P on sections supported in Z\K. The operator
P̃ can be written in the form:

P̃ =
k∑

j=0
Ak−j(t)∂j

t (3.3)

where ∂t is the covariant derivative in the direction ∂
∂t

for the connection ∇0 on E
(which coincides with the Lie derivative of ∂

∂t
because of translation-invariance),

and Ak−j(t) : C∞(E0) → C∞(F0) are differential operators depending smoothly
on t. We say that P is adapted (with exponential rate µ > 0) if there exists a
translation-invariant differential operator P0 : C∞(E0) → C∞(F0) of the form:

P0 =
k∑

j=0
Ak−j∂

j
t (3.4)

such that for any smooth section u of E0 defined on (0,∞) ×X and for any l ≥ 0
and 0 ≤ j ≤ k we have:

|∇l
0(Ak−j(t)u− Ak−ju)|0 = O

e−µt
∑
i≤l

|∇i
0u|0

 (3.5)

as t → ∞. That is, we essentially want the coefficients of P̃ − P0 and all their
derivatives to have exponential decay when t → ∞. The operator P0 is called
the indicial operator of P . Note that the formal adjoint of an adapted P is also
adapted, and its indicial operator is naturally P ∗

0 .

Example 3.2. The tensor bundles TZ⊗s ⊗ T ∗Z⊗r, the bundle of differential forms
ΛkT ∗Z, or any direct sums or tensor products thereof are adapted (endowed with
the metric induced by g and its Levi-Civita connection). Moreover, in those cases
we might choose the bundle isomorphism covering ϕ to be the push-forward map.
The differential operators d+ d∗ and ∆ = dd∗ + d∗d are adapted.

We now describe the general gluing problem that we are interested in. Let Z1

and Z2 be two EAC manifolds and assume that the cross-section of Z2 is the same
as the cross-section X of Z1, but with opposite orientation. By definition, there
exist compact subsets Ki ⊂ Zi and diffeomorphisms ϕi : (0,∞) × Xi → Zi\Ki

where X1 = X = X2, and we can pick cylindrical coordinate functions ρi : Zi →
R>0. For any T ≥ 0, we can construct an oriented compact manifold MT by
gluing the domains {ρ1 ≤ T + 2} ⊂ Z1 and {ρ2 ≤ T + 2} ⊂ Z2 along the annuli
{T ≤ ρi ≤ T + 2} ≃ [−1, 1] ×X with the identification:

ϕ1(T + 1 + t, x) ≃ ϕ2(T + 1 − t, x), ∀(t, x) ∈ [−1, 1] ×X. (3.6)
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Z1

X Z2

X

MT

ρ1T + 11

T T + 2

ρ2 T + 1 1

T + 2 T

ρT0−T T−1 1

Figure 3.1: The gluing construction and neck-stretching.

Define a smooth function ρT on MT by:

ρT ≡

ρ1 − T − 1 in {ρ1 ≤ T + 2}
T + 1 − ρ2 in {ρ2 ≤ T + 2}

.

This is well-defined as ρ1 −T − 1 coincides with T +1 −ρ2 under the identification
(3.6). Intuitively, the function ρT parametrises the neck of MT . In particular, the
domain {|ρ| ≤ T} is diffeomorphic to the finite cylinder [−T, T ] × X (see Figure
3.1). Our goal is to study the mapping properties of elliptic operators defined
on MT as T becomes very large, and relate it to the corresponding properties of
operators on Zi.

Remark 3.3. In the twisted connected sum construction (see §2.2.2), we considered
a variation of the above gluing construction where the EAC manifolds Z1 and Z2

are glued along a non-trivial isometry γ : X → X (see (2.10)). From the point
of view of the analysis this does not change anything; in fact if we replace ϕ2 by
ϕ2 ◦ (id ×γ) we can see that the twisted connected sum is a particular case of our
seemingly ‘untwisted’ gluing problem.

Suppose that the manifolds Zi are endowed with EAC metrics gi asymptotic
to the same translation-invariant metric gY = dt2 + g0 on Y = R ×X. It will also
be useful to fix a cutoff function χ : R → [0, 1] such that χ ≡ 0 on (−∞,−1

2 ] and
χ ≡ 1 on [1

2 ,+∞). If T ∈ R we let χT (t) = χ(t− T ). Then, for T large enough

gi,T = (1 − χT (ρi))gi + χT (ρi)gY
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is a Riemannian metric on Zi which coincides with gi on {ρi ≤ T − 1
2} and with

gY on {ρi ≥ T + 1
2}. Moreover, the difference gi − gi,T and all their derivatives are

uniformly bounded by O(e−µT ). Note that here we implicitly identify Zi\Ki with
the half cylinder (0,∞) × Xi to make notations lighter. We can patch g1,T and
g2,T to form a Riemannian metric gT on MT , defining:

gT ≡

g1,T if ρT ≤ 0
g2,T if ρT ≥ 0

.

Similarly, if we have adapted bundles (Ei, hi,∇i) on Zi such that their asymp-
totic models are both isomorphic to the same translation-invariant vector bundle
(E0, h0,∇0) on R×X, we can use the same cutoff procedure to patch them up on
MT and form a vector bundle ET with metric hT and connection ∇T .

Consider matching adapted bundles Ei, Fi on Zi (i = 1, 2) asymptotic to the
same translation-invariant bundles E0, F 0, and adapted elliptic operators Pi :
C∞(Ei) → C∞(Fi) of order k. Denote by Pi,0(x, ∂x, ∂t) : C∞(E0) → C∞(F 0)
the indicial operator of Pi, where we use ∂x as a loose notation for the derivatives
along the cross-section X. In order to patch up these operators we need to assume
the following compatibility condition [81]:

P2,0(x, ∂x, ∂t) = P1,0(x, ∂x,−∂t). (3.7)

Assuming that it is satisfied, define:

Pi,T = (1 − χT (ρi))Pi + χT (ρi)Pi,0

which coincides with Pi for ρi ≤ T− 1
2 and with Pi,0 for ρi ≥ T+ 1

2 . For large enough
T , the operators Pi,T are elliptic, and moreover the coefficients of Pi − Pi,T and
all their derivatives are uniformly bounded by O(e−µT ). Patching P1,T and P2,T

together in the same way as for the metrics gi,T , we obtain a family of operators
PT : C∞(ET ) → C∞(FT ) which are elliptic for large enough T (see Figure 3.2).
Elliptic regularity on compact manifolds implies that the action of PT on Sobolev
spaces of sections induce Fredholm maps. Our goal is to construct Fredholm
inverses for these maps, with a good control on their norm as T → ∞.

Before explaining our results in more detail in the next part, let us make our
conventions for Sobolev and C l-norms explicit. For p ≥ 1 and l ∈ N, the W l,p-norm
of a section u ∈ C∞(ET ) can be defined as:

∥u∥W l,p =
∑
j≤l

∥∇j
Tu∥Lp (3.8)
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Figure 3.2: The metric gT and the operator PT .

where the fibrewise norm of ∇j
Tu is computed with respect to the metrics hT ,

gT and we integrate over the volume form of gT . The Sobolev space W l,p(ET ) is
defined as the completion of C∞(ET ) for the W l,p-norm. In the same way, the C l

norm of a smooth section u ∈ C∞(ET ) will be defined as

∥u∥Cl =
∑
j≤l

∥∇j
Tu∥C0 (3.9)

and C l(ET ) is the completion of C∞(ET ) for this norm.
In Section 3.3, we will see that the adapted operators Pi on the EAC manifolds

Zi induce bounded maps W k+l,p(Ei) → W l,p(Ei) and satisfy a priori estimates

∥u∥W k+l,p ≤ C(∥Pu∥W l,p + ∥u∥Lp).

These estimates for Pi induce a priori estimates for the family of operators PT on
MT which are uniform in T :

Proposition 3.4. With the above setup, let p > 1 and l ∈ N. Then the map

PT : W k+l,p(ET ) → W l,p(FT )

is uniformly bounded as T → ∞. Moreover there exist constants C,C ′ > 0 such
that for T large enough and for any u ∈ W k+l,p(ET ) we have:

∥u∥W k+l,p ≤ C (∥PTu∥W l,p + ∥u∥Lp) .

In the same way, there are continuous embeddings W r,p(Ei) ↪→ W s,q(Ei) and
W r,p(Ei) ↪→ C l(Ei) whenever 1

q
≤ 1

q
+ r−s

n
and 1

p
≤ r−l

n
, for the spaces of sections

over the EAC manifolds Zi [88]. Hence on MT we deduce the uniform boundedness
of the Sobolev embeddings:

Proposition 3.5. Let p, q > 1 and r, s, l ∈ N such that 1
q

≤ 1
q

+ r−s
n

and 1
p

≤ r−l
n

.
Then there exist constants C,C ′ > 0 which do not depend on T such that

∥u∥W s,q ≤ C∥u∥W r,p and ∥u∥Cl ≤ C ′∥u∥W r,p , ∀ u ∈ W r,p(ET ).
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By elliptic regularity, the PT can be inverted in the L2-orthogonal complements
of the kernels of PT and of its adjoint. However, since the dimensions of these
spaces are not deformation-invariant (only the index is), they do depend on the
precise way we take cutoffs to define our gluing, and so will the norm of the inverse
of PT . In order to make general statements, we would like to define notions of
substitute kernel and cokernel in the fashion of [69] (see also [71, §18]), determined
by the gluing data and in the complement of which we have a good control on
the norm of the inverse of PT . Under the restricting assumption that the map
induced by the indicial operator P0 = P1,0 on Sobolev spaces of sections on Y is
an isomorphism, these have been defined and studied in [81]. However in many
cases of interest this assumption is not satisfied, as the indicial operator may have
real roots (see next part). Thus we need to define notions of substitute kernel and
cokernel adapted to that case.

3.1.2 Substitute kernel and cokernel. In order to define the substitute ker-
nel and cokernel, a good understanding of the mapping properties of translation-
invariant operators on cylinders and of adapted operators on EAC manifolds is
crucial. For completeness, the results that we need are gathered in §3.2.1 and
§3.3.1. Some original references are [3], [89] and [93].

In the situation described in the previous part, let P0 = P1,0 : C∞(E0) →
C∞(F 0) be the indicial operator of P1, acting on the cylinder Y = R ×X. Points
in Y will be denoted by y = (t, x). A particularly important role in our analysis
is played by solutions of the homogeneous equation P0u = 0 of the form:

u(t, x) =
m∑

j=1
eiλjtuj(t, x)

where λ1, ..., λm are real numbers and the sections uj are polynomial in the variable
t. Such solutions are called polyhomogeneous solutions of rate 0, and we denote
by E the vector space they span. As a matter of general theory, this is a finite-
dimensional space, and in particular there are only finitely many values λ ∈ R
such that the homogeneous equation P0u = 0 admits a non-trivial solution of the
form u(t, x) = eiλtuλ(t, x), where uλ is polynomial in t. These values are called
the real roots of P0 (see Section 3.2 for a detailed discussion). In Section 3.2 we
will see that each root λj has a certain order dj ∈ N∗ such that the sections uj in
a polyhomogeneous solution of rate 0 are polynomials of order at most dj − 1 in
the variable t. We will usually denote by d the maximum of the orders dj. Let
us point out here that the real roots of the formal adjoint P ∗

0 are the same as
the real roots of P0, and denote by E ∗ the space of polyhomogeneous solutions
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of rate 0 of P ∗
0 u = 0. It follows from the compatibility condition (3.7) that the

space of polyhomogeneous solutions of P2,0u = 0 of rate 0 is {u(−t, x), u ∈ E },
and similarly for the adjoint operators.

Let us denote by Ki the space of solutions of Piu = 0 with sub-exponential
growth and Ki,0 the subspace of decaying solutions, for i = 1, 2. By Lockhart–
McOwen theory ([89], see also §3.3.1 for more details), Ki has finite dimension
and each of its elements is asymptotic to a polyhomogeneous solution of Pi,0u = 0
with rate 0, up to an exponentially decaying term. More precisely, for any u ∈ K1,
there exists a polyhomogeneous solution u0 ∈ E such that for any l ∈ N:

|∇l
0(u(t, x) − u0(t, x))|0 = O

(
e−δt

)
when t → ∞, for any sufficiently small δ > 0. Here we implicitly identify u over
Z1\K1 with a section of E0 over (0,∞) × X. Therefore, we can define a linear
map κ1 : K1 → E , such that for any u ∈ K1, the difference u − κ1[u] and all its
derivatives have exponential decay at infinity. Taking care of the fact that we need
to change the sign of the variable t, we can similarly define a map κ2 : K2 → E

such that |u(x, t)−κ2[u](x,−t)|0 = O(e−δt) as t → ∞ for all u ∈ K2, with the usual
identifications. For i = 1, 2, the kernel of the map κi in Ki is Ki,0. Considering
adjoint operators, we may also define K ∗

i , K ∗
i,0 and linear maps κ∗

i : K ∗
i → E ∗.

With these notations in hand, let u1 ∈ K1, u2 ∈ K2 and fix T > 0. We say
that u1 and u2 are matching at T if the following condition is satisfied:

κ1[u1](t+ T + 1, x) = κ2[u2](t− T − 1, x), ∀(t, x) ∈ R ×X. (3.10)

Given a matching pair of solutions (u1, u2), we can define a section of the bundle
ET → MT as follows:

uT = (1 − χT +1(ρ1))u1 + (1 − χT +1(ρ2))u2

where we consider χ(ρi)ui as a section of ET supported in the domain {ρi ≤
T + 2} ⊂ MT . In particular, uT ≡ u1 in the domain {ρ1 ≤ T + 1

2}, uT ≡ u2

in {ρ2 ≤ T + 1
2} and it smoothly interpolates between the two in {|ρT | ≤ 1

2}. It
is easy to see that PTuT ≡ 0 outside of the annulus {|ρT | ≤ 3

2}. The matching
condition (3.10) ensures that for any l ∈ N, small enough δ > 0 and arbitrary
norms on K1, K2, there exists a constant C > 0 independent of T ≥ 1 such that:

∥PTuT ∥Cl ≤ Ce−δT (∥u1∥ + ∥u2∥) (3.11)

for any matching pair of solutions (u1, u2). In that sense, uT is an approximate
solution of PTu = 0. The substitute kernel KT of PT is defined as the finite-
dimensional subspace of C∞(ET ) of approximate solutions constructed in this way,
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from a matching pair (u1, u2) of solutions of Piu = 0. Similarly we define the
substitute cokernel K ∗

T as the substitute kernel of P ∗
T . These definitions depend

on the arbitrary choice of cutoff function χ, but since the difference for two choices
of cutoff function would decay exponentially with T this will not be an issue.

For these notions of substitute kernel and cokernel to be convenient to handle
in practice, it is simpler to assume that for T large enough the dimensions of
KT and K ∗

T are independent of T . This is automatically satisfied if the indicial
operator P0 has only one root. Indeed, in this case we can express the matching
condition at T as a finite-dimensional linear system depending polynomially on T
by choosing convenient bases for im κ1, im κ2 and E . The minors of this system
are polynomial in T , and therefore are either identically 0 or do not vanish for T
large enough. Hence the rank of the system does not depend on T for T large
enough, and neither does the dimension of its kernel. We can argue similarly for
the substitute cokernel K ∗

T .
For more general operators, the matching condition will be expressed as a

finite-dimensional linear system with coefficients depending analytically on T , and
although the non-trivial minors of the system only have isolated zeroes we cannot
always ensure that there are only finitely many of them. This is the situation that
we want to avoid. Therefore we will assume that P has only one real root to state
our main result, about the existence of a Fredholm inverse for P in the complement
of the substitute kernel and cokernel. This is sufficient for our applications in
Section 3.4. However the method we develop is more general, and for most of this
chapter we do not need to take any restricting assumptions on the roots of the
indicial operator.

Assuming that the spaces KT and K ∗
T have constant dimension for T large

enough, it follows from (3.11) that for any Sobolev norm W k,p and any small
enough δ > 0, there exists a constant C > 0 such that for T large enough and for
any u ∈ KT we have:

∥PTu∥W k,p ≤ Ce−δT ∥u∥Lp .

Similar bounds hold for P ∗
T . Hence there is no hope to have a control on the norm

of the inverse of PT better than O(eδT ) if we do not work on the complement of
KT and K ∗

T .

3.1.3 Results and strategy. Our first main result is the following theorem,
which says that under the limiting assumption described above we can find a
Fredholm inverse for PT in the complement of the substitute kernel and cokernel,
with norm bounded by a power of T :

55



Theorem 3.6. Let p > 1 and l ∈ N, and assume that P0 has only one real root.
Then there exist constants C,C ′ > 0 and an exponent β ≥ 0 such that for T large
enough the following holds.

For any f ∈ W l,p(FT ), there exist a unique u ∈ W k+l,p(ET ) orthogonal to KT

and a unique w ∈ K ∗
T such that f = PTu+ w. Moreover, u satisfies the bound:

∥u∥W k+l,p ≤ C∥f∥W l,p + C ′T β∥f∥Lp .

Remark 3.7. The case when the indicial operator P0 has no real roots has been
studied by Kovalev–Singer in [81], who show that under this assumption one can
build an approximate inverse for PT with uniform bounds (independent of T ).

In some cases, we are also able to determine the optimal exponent β. This is for
instance the case of the Laplacian operator ∆T of the metric gT . The Laplacian
acting on q-forms on R × X has no real roots when bq−1(X) + bq(X) = 0 and
admits 0 as unique real root when bq−1(X) + bq(X) > 0. If bq−1(X) + bq(X) = 0,
it follows from the results of [81] (see Remark 3.7) that the norm of the inverse of
∆T orthogonally to the space of harmonic q-forms is bounded independently of T .
When bq−1(X) + bq(X) > 0, we will see that β = 2 is optimal in Theorem 3.6 and
the substitute kernel gives a good approximation of the space of harmonic forms
(see Corollary 3.38).

If we consider the L2-range, this means that the behaviour of the low eigenval-
ues of ∆T depends on the topology of the cross-section X. When bq−1(X)+bq(X) =
0, the lowest non-zero eigenvalue of ∆T acting on q-forms is uniformly bounded
below as T → ∞. On the other hand, if bq−1(X) + bq(X) > 0 then the first
eigenvalue satisfies a bound of the type λ1(T ) ≥ C

T 2 for some constant C > 0. It
is an interesting problem to determine the distribution the eigenvalues that have
the fastest decay rate. Let us define the densities of low eigenvalues as:

Λq,inf(s) = lim inf
T →∞

#
{
eigenvalues of ∆T acting on q-forms in

(
0, π2sT−2

]}
Λq,sup(s) = lim sup

T →∞
#
{
eigenvalues of ∆T acting on q-forms in

(
0, π2sT−2

]}
where we count eigenvalues with multiplicity. The normalisation by T−2 comes
from the fact that we expect the lowest eigenvalues to be decaying at precisely this
rate, whilst the factor π2 is just a matter of convenience. We can similarly define
the densities Λ∗

q,inf(s) and Λ∗
q,sup(s) of low eigenvalues of the Laplacian acting on

co-exact q-forms. We are interested in understanding the asymptotic behaviour of
these densities as s → ∞. In §3.4.2 we prove the following:
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Figure 3.3: Asymptotic behaviour of the spectrum.

Theorem 3.8. If bq−1(X) + bq(X) > 0, then the densities of low eigenvalues
satisfy:

Λq,sup(s) = Λq,inf(s) +O(1) = 2(bq−1(X) + bq(X))
√
s+O(1)

as s → ∞. If moreover bq(X) > 0 then:

Λ∗
q,sup(s) = Λ∗

q,inf(s) +O(1) = 2bq(X)
√
s+O(1).

This theorem essentially says that the lowest eigenvalues of ∆T are asymptot-
ically distributed as the low eigenvalues of the Laplacian acting on the product
S1

2T ×X, where the first factor is a circle of length 2T (see Figure 3.3 above). We
can only express our result as an asymptotic statement on the distribution of the
eigenvalues and cannot obtain a more precise asymptotic development (unlike in
the simpler setting of [46]). This is because the interaction between the building
blocks of the construction creates a shift in the spectrum of ∆T compared with
the spectrum of the Laplacian on the product in a way which we cannot explicitly
describe, because we do not have exactly cylindrical ends.

Remark 3.9. In the case of the twisted connected sum of G2-manifolds, the cross-
section is T 2 ×K3 (or a quotient thereof). Using the Ck-estimates of the previous
chapter, Theorem 3.8 can be applied. Hence we find an infinite number of eigen-
values decaying at the same rate. This is consistent with the predictions of the
swampland distance conjecture, where they correspond to the infinite towers of
asymptotically light states. I have been told by physicists that this asymptotic
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density of eigenvalues is related to the concept of dualities, that is, in this limit
the correct low-energy physics is described by a different theory compactified on
the cross-section X instead of MT .

Let us finish this section with an overview of our strategy. We prove Theorem
3.6 by an explicit construction method, similar to the constructions by Kapouleas
of minimal surfaces in Euclidean space [69, 70], by which we were inspired. The
idea is to use cutoffs to separate the analysis in three different domains: the neck
region, which is close to a finite cylinder [−T, T ]×X, and two regions isometric to
the domains {ρi ≤ T + 1} ⊂ Zi. One challenge is that when the indicial operator
P0 acting on the cylinder has real roots, it is not invertible nor even Fredholm in
the Sobolev range that we would like to consider. However, this failure is due to
the asymptotic behaviour of solutions, and we only need to work on a compact
region of the cylinder. To deal with this issue, let us denote by W l,p

c the subspace of
W l,p constituted by sections with compact essential support. The main analytical
ingredient of our construction is the following theorem, proved in Section 3.2:

Theorem 3.10. Let P0 : C∞(E0) → C∞(F 0) be an elliptic translation-invariant
operator of order k acting on the cylinder R × X. Let d be the maximal order of
a real root of P0.

For any p > 1, there exists a map Q0 : Lp
c(F 0) → W k,p

loc (E0) such that for any
f ∈ Lp(F 0) with compact essential support, P0Q0f = f . Moreover, there exists a
constant C > 0 such that for any T ≥ 1 and any f ∈ Lp

c(F 0) with essential support
contained in (−T, T ) ×X:

∥Q0f∥W k,p((−T,T )×X) ≤ CT d∥f∥Lp .

Remark 3.11. The existence of the map Q0 can be deduced from standard results
as [89] or [93] for instance. However, the explicit expression that we give for Q0

will be important for our purpose, since a precise understanding of the asymptotic
behaviour of Q0f will play a key role in the construction of Section 3.3.

Using this theorem, we can try to build approximate solutions of the equation
PTu = f by first taking a cutoff f0 of f in the neck region, and considering an
equation of the type P0u0 = f0. We can consider f0 as a section of F 0 supported
in [−T, T ] × X. This equation can be solved using the above theorem. Taking a
cutoff u0 of the solution, the equation PTu = f can be replaced with an equation
of the form PT (u − u0) = f ′, where f ′ is appropriately small in the neck region.
Thus f ′ can be written as a sum f1 + f2, where each fi is a section of Fi defined
in the domain {ρi ≤ T + 1} ⊂ Zi and satisfies good decay properties. This allows

58



us to use weighted analysis to study the equations Piui = fi in a range where the
operators Pi satisfy the Fredholm property. Similar ideas can be found for instance
in [99].

Unfortunately, there are obstructions to solving Piui = fi in weighted spaces,
and the main difficulty is to understand how these obstructions interact. Using a
pairing defined in §3.2.2, we can keep track of the obstructions and express their
vanishing (up to an exponentially decaying error term) as a finite-dimensional lin-
ear system, which we call the characteristic system of our gluing problem. The
unknown of this system is an element v ∈ E which represents our degrees of free-
dom in solving the equation P0u = f0. The coefficients of the system are linearly
determined by f . In §3.3.3, we prove that in full generality the characteristic sys-
tem admits a solution if and only if f is orthogonal to the substitute cokernel.
With the extra assumption that P has only one root, this allows us to build an
approximate solution of the equation PTu = f , and when T is large enough we can
prove Theorem 3.6 using an iterative process. However, our method could apply
more generally, as long as one can ensure that the characteristic system admits a
solution with reasonable bounds.

3.2 Translation-invariant differential operators

Throughout this section, we fix a compact oriented manifold X and let Y = R×X.
If E → X is a vector bundle, we denote by E → Y the pull-back of E by the
projection Y → X on the second factor. Given any connection ∇ on E, we can
endow E with the pull-back connection ∇. Parallel transport along the vector field
∂
∂t

naturally defines a translation operator on E. A section of E is translation-
invariant if and only if it is the pull-back of a section of E. We also equip Y with a
cylindrical metric gY = dt2 + gX and endow E with a translation-invariant metric.
Sobolev and Ck norms on Y are defined with respect to this data.

In §3.2.1, we introduce some background about analysis on cylinders. In §3.2.2
we study the action of a general elliptic translation-invariant operator P on poly-
homogeneous sections and define a pairing between the spaces of polyhomogeneous
solutions of Pu = 0 and of P ∗v = 0. Last, we prove Theorem 3.10 in §3.2.3 by
constructing explicit solutions of the equation Pu = f . Using the above pairing,
we can precisely analyse the asymptotic behaviour of these solutions, which will
play a key role in Section 3.3.
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3.2.1 Analysis on cylinders by separation of variables. On the cylinder
Y = R × X, we have natural isomorphisms identifying Lp(E) with Lp(R, Lp(E))
for any p ≥ 1, which follow from Fubini’s theorem. Therefore we can think of
sections of translation-invariant vector bundles over Y as maps from R to an
appropriate Banach space of sections over X. Moreover, for p ≥ 2 there is a
continuous embedding Lp(E) ↪→ L2(E), which therefore induces a continuous
embedding Lp(E) → Lp(R, L2(E)). Hence there exists a constant C > 0 such
that for any u ∈ Lp(E):

∥u∥Lp(R,L2(E)) =
(∫

R
∥ut∥p

L2dt
) 1

p

≤ C∥u∥Lp

where ut = u|{t}×X . The main tools that we will need for the analysis of PDEs on
a cylinder R×X are the Fourier transform and the convolution along the variable
t ∈ R. Below we recall some definitions.

Let H be a complex Hilbert space, and consider functions f : R → H. Later,
we will take H to be the space L2(E). We denote by S (R, H) the space of H-
valued Schwartz functions, that is, the space of smooth functions taking values in
H that have all derivatives rapidly decaying at infinity. If f ∈ S (R, H), we can
define its Fourier transform f̂ : R → H by:

f̂(λ) =
∫
R
e−iλtf(t)dt (3.12)

for any λ ∈ R. As in the case of scalar-valued functions, f̂ also belongs to the
space S (R, H). This defines an invertible map S (R, H) → S (R, H), and the
inverse Fourier transform takes the usual expression. As H is a Hilbert space, the
Plancherel theorem holds and the Fourier transform extends to a bounded linear
map L2(R, H) → L2(R, H), which is, up to constant, an isometry [1, Th. 2.47].

Just as for scalar-valued maps, the Plancherel theorem also implies that the
Fourier transform can be extended to the dual space S ′(R, H) of S (R, H). In
particular, for any p ≥ 1 we can define the Fourier transform of an Lp-function
through the embedding Lp(R, H) → S ′(R, H). On S ′(R, H) we can also define
weak derivatives by duality, and moreover the relation f̂ ′(λ) = iλf̂(λ) can also be
proved by evaluating against test functions.

Let us consider two complex Hilbert spaces H1, H2 and let B(H1, H2) be the
Banach space of bounded linear operators from H1 to H2. Let R : R → B(H1, H2)
be a smooth map, such that R and all its derivatives have at most polynomial
growth. Then R induces a linear operator AR : S (R, H1) → S (R, H2) acting on
a Schwartz function f by:

AR[f ](t) = 1
2π

∫
eiλtR(λ)f̂(λ)dλ, ∀t ∈ R. (3.13)

60



The Plancherel theorem implies that if R is bounded, then AR extends to a
bounded linear operator L2(R, H1) → L2(R, H2). The Hilbert-space-valued Mikhlin
multiplier theorem gives a sufficient condition for AR to extend as a bounded linear
map for other Lp-spaces (see [1, Th. 5.8] or [12, Th. 6.1.6]):

Theorem 3.12. Assume that there exists a constant C such that ∥R(λ)∥+∥λR′(λ)∥ ≤
C for all λ ∈ R, where ∥ · ∥ denotes the norm of B(H1, H2). Then AR extends as
a bounded linear map Lp(R, H1) → Lp(R, H2) for all 1 < p < ∞.

In §3.2.3, we will also need to consider functions F : R → H defined by integrals
of the form

F (t) =
∫ t

−∞

(t− τ)l−1

(l − 1)! f(τ)dτ

where l ≥ 1 and f ∈ L1
c(R, H) is a compactly supported integrable function. The

function F is continuous, and since the support of f is compact F has at most
polynomial growth at infinity, and therefore it defines an element of S ′(R, H). If
we denote the Heaviside step function by H and define Hl(t) = tl−1

(l−1)!H(t), then
F can be written more compactly as the convolution Hl ∗ f . Note that the n-th
order weak derivative of Hl is Hl−n if n < l and the Dirac mass δ if l = n. The
weak derivatives of F ∈ S ′(R, H) are naturally given by:

F (n) =


Hl−n ∗ f if l < n,

f if l = n,

f (n−l) if l > n.

(3.14)

This can be proved by integrating against a test function g ∈ S (R, H), as in the
case of scalar-valued functions.

Let us now turn to the study of PDEs on cylinders. Let E and F be translation-
invariant vector bundles over Y = R × X, equipped with translation-invariant
metrics and connections. We will denote by y = (t, x) the points in Y . Moreover
let ∂t be the covariant derivative along ∂

∂t
, and define Dt = −i∂t.

A differential operator P : C∞(E) → C∞(F ) of order k is translation-invariant
if it takes the form:

P (x, ∂x, Dt) =
k∑

l=0
Ak−l(x, ∂x)Dl

t

where Ak−l(x, ∂x) are differential operators C∞(E) → C∞(F ). If P has order k,
it is a standard fact that it induces continuous maps P : W k+l,p(E) → W l,p(F ) on
Sobolev spaces of sections.

From now on we assume that P is elliptic, and for any T > 0 we denote by
ET the restriction of E to the finite cylinder (−T, T ) × X. If u ∈ Lp(E2) and
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Pu ∈ W l,p(E2), then by elliptic regularity the restriction of u to (−1, 1) ×X is in
W k+l,p(E1), and moreover we have interior estimates:

∥u∥W k+l,p(E1) ≤ C
(
∥Pu∥W l,p(E2) + ∥u∥Lp(E2)

)
.

Combined with the translation-invariance of P , we get interior estimates for sec-
tions of ET that are independent of T :

Proposition 3.13. Let P : C∞(E) → C∞(F ) be a translation-invariant elliptic
operator of order k, and let p > 1 and l ∈ N. Then there exists C > 0 such that for
any T ≥ 1 the following holds. If f ∈ W l,p(F T +1) and u ∈ Lp(ET +1) is a solution
of Pu = f , then u|(−T,T )×X ∈ W k+l,p(ET ) with the bound:

∥u∥W k+l,p(ET ) ≤ C
(
∥f∥W l,p(ET +1) + ∥u∥Lp(ET +1)

)
.

When p ≥ 2, we can make a stronger statement. If u ∈ L2(E2) and Pu ∈
W l,p(E2), then the restriction of u to (−1, 1) × X is in W k+l,p(E1) and moreover
we have an estimate:

∥u∥W k+l,p(E1) ≤ C
(
∥Pu∥W l,p(E2) + ∥u∥L2(E2)

)
.

Since Lp((−2, 2), L2(E)) continuously embeds into L2((−2, 2), L2(E)) ≃ L2(E2),
there exists a constant C ′ > 0 such that if u ∈ Lp((−2, 2), L2(E)) then we have
the following interior estimate:

∥u∥W k+l,p(E1) ≤ C
(
∥Pu∥W l,p(E2) + ∥u∥Lp((−2,2),L2(E))

)
.

Using translation-invariance this implies:

Proposition 3.14. Let P : C∞(E) → C∞(F ) be a translation-invariant elliptic
operator of order k, and let p ≥ 2 and l ∈ N. Then there exists C > 0 such that
for any T ≥ 1 the following holds. If f ∈ W l,p(F T +1) and u ∈ Lp((−T − 1, T +
1), L2(E)) is a solution of Pu = f , then u|(−T,T )×X ∈ W k+l,p(ET ) with the bound::

∥u∥W k+l,p(ET ) ≤ C
(
∥f∥W l,p(ET +1) + ∥u∥Lp((−T −1,T +1),L2(E))

)
.

In the remainder of this part, we will be concerned with equations of the type

P (x, ∂x, Dt)u(t, x) = f(t, x) (3.15)

where P is a translation-invariant elliptic operator. It is usually studied by taking
its Fourier transform in the variable t, which takes the form

P (x, ∂x, λ)û(x, λ) = f̂(x, λ). (3.16)
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For any fixed λ ∈ C, the operator P (x, ∂x, λ) : C∞(E) → C∞(F ) is an elliptic
operator of order k, and hence defines Fredholm maps W k+l,p(E) → W l,p(F ) for
p > 1 and l ≥ 0. By the results of [3] these maps are analytic in the variable λ,
and there exists a discrete set CP ⊂ C such that the homogeneous equation

P (x, ∂x, λ)û(x, λ) = 0 (3.17)

has a non-trivial solution if and only if λ ∈ CP . Moreover, the intersection of CP

with any strip {δ1 < im λ < δ2} of C is finite. The elements of CP are called the
roots of P . The discrete set DP = {im λ, λ ∈ CP } is called the set of indicial roots.

Example 3.15. Consider the translation-invariant bundle ΛCT
∗Y of complex-valued

differential forms. It splits as a direct sum:

ΛCT
∗Y = ΛCT

∗X ⊕ dt ∧ ΛCT
∗X

where ΛCT
∗X is the pull-back of the bundle of differential forms on X. The

operators dY and d∗
Y take the form:dY (α + dt ∧ β) = dXα + dt ∧ (∂tα− dXβ)
d∗

Y (α + dt ∧ β) = d∗
Xα− ∂tβ − dt ∧ d∗

Xβ

Thus if we define J ∈ End(ΛCT
∗Y ) by Jη = dt ∧ η − ι ∂

∂t
η, where ι denotes the

interior product, we can write the Fourier transform of the operator dY + d∗
Y as

(dY + d∗
Y )(λ)η = (dX + d∗

X)α− dt ∧ (dX + d∗
X)β + iλJη.

with η = α + dt ∧ β. The Laplacian ∆Y = dY d
∗
Y + d∗

Y dY can be written as
∆Y = −∂2

t + ∆X , so that its Fourier transform is ∆X + λ2. For both operators,
the roots are exactly the values ±i

√
λn, where λn ≥ 0 are the eigenvalues of the

Laplacian ∆X . In particular the only real root is λ0 = 0, and the corresponding
translation-invariant solutions are of the form α + dt ∧ β, where α and β are
harmonic forms on X.

For λ ∈ C, we will write P (λ) as a short-hand for P (x, ∂x, λ). It can be seen
as a Fredholm map W k+l,p(E) → W l,p(F ), analytic in the variable λ. This implies
that P (λ) is invertible for λ /∈ CP [3, 4]. Its inverse R(λ) is called the resolvent of
P (λ); for any m ≤ k+ l it can be considered as a bounded operator form W l,p(F )
to Wm,p(E) (which is compact when m < k+ l). We will denote by ∥R(λ)∥l,m the
operator norm of the resolvent seen as a map W l,p(F ) → Wm,p(E). By the results
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of [3] the resolvent is meromorphic in λ ∈ C, with poles exactly at the roots of P .
That is, around any λ0 ∈ CP we can write:

R(λ) = R−d(λ0)
(λ− λ0)d

+ · · · + R−1(λ0)
λ− λ0

+
∞∑

n=0
Rn(λ0)(λ− λ0)n

where Rl(λ0) are bounded operators W l,p(F ) → Wm,p(E) and the series has posi-
tive radius of convergence. The largest positive integer d such that R−d(λ0) ̸= 0 is
called the order of λ0. The notions of root, pole and order do not depend on the
Sobolev spaces we choose to work with.

The following bounds on the resolvent R(λ) and its derivative R′(λ) = dR
dλ

(λ)
are crucial for our purpose, and follow from the more general [3, Theorem 5.4]:

Theorem 3.16. Let p > 1, l ∈ N and P be a translation-invariant elliptic opera-
tor. Then the following holds:

(i) The resolvent R(λ) has no poles in a double sector {arg(±λ) ≤ δ, |λ| ≥ N}
and in this domain there exists a constant C > 0 such that:

k∑
j=0

∥∥∥λk−jR(λ)
∥∥∥

l,l+j
≤ C.

(ii) Furthermore, as |λ| → ∞ along the real axis:

k∑
j=0

∥∥∥λk−jR′(λ)
∥∥∥

l,l+j
= O

(1
λ

)
.

The last result that we want to mention here is the following well-known propo-
sition (see [79] for an original reference), which can be seen as a particular case of
Theorem 3.10. When P has no roots along the real axis the following holds.

Proposition 3.17. Let p > 1, l ∈ N, and assume that P has no real roots. Then
the map W k+l,p(E) → W l,p(F ) induced by P admits a bounded inverse.

A sketch proof of this proposition is as follows. If f is a smooth, compactly
supported section of F , then equation (3.16) admits a solution û(λ) = R(λ)f̂(λ),
where we can consider f̂ as a Schwartz function valued in L2(F ) and the resolvent
R(λ) as a bounded map L2(F ) → L2(E). Hence we have a solution u = Q[f ] ∈
S (R, L2(E)) of Pu = f defined as:

Q[f ](t) = 1
2π

∫
eiλtR(λ)f̂(λ)dλ, ∀t ∈ R. (3.18)

It follows from Theorem 3.12 and the above bounds on the resolvent that Q extends
to a bounded linear map Lp(R, L2(F )) → Lp(R, L2(E)) for any 1 < p < ∞.
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If p ≥ 2, the fact that P admits a bounded inverse in the Lp-Sobolev range
can therefore be deduced from Proposition 3.14 and the continuous embedding
Lp(E) ↪→ Lp(R, L2(E)), and the case 1 < p < 2 can be treated by duality.

When P has real roots the statement of Proposition 3.17 no longer holds and
the map induced by P on Sobolev spaces is not even Fredholm. It still has finite-
dimensional kernel but the cokernel has infinite dimension. In order to understand
the mapping properties of P in more detail, we want to make sense of the inverse
Fourier transform of the singular part of the resolvent.

3.2.2 Polyhomogeneous sections. In this part, we prove that the action of P
on polyhomogeneous sections admits a right inverse and introduce a pairing which
will play an important role in Section 3.3. A section of E → Y is called exponential
if it is of the form u(x, t) = eiλtp(x, t), where λ ∈ C is called the rate of u and
p is polynomial in the variable t. A polyhomogeneous section is a finite sum of
exponential sections.

To understand the action of P on polyhomogeneous sections, we fix λ0 ∈ C
and define:

Pλ0(x, ∂x, Dt) = e−iλ0tP (x, ∂x, Dt)eiλ0t (3.19)

which is a translation-invariant operator on Y . More explicitly,

Pλ0(Dt) =
∑
n≥0

1
n!
∂nP

∂λn
(λ0)Dn

t .

We consider Pλ0 as an operator mapping the space W k,p(E)[t] into Lp(F )[t], that
is, we consider the action on sections of E → Y that are polynomials in t and have
W k,p coefficients. Our goal is to show that Pλ0 admits a right inverse Qλ0 .

Consider the resolvent R(λ) as an operator Lp(F ) → W k,p(E). If λ0 is a root
of P , it is a pole of R and we denote by d(λ0) its degree. By convention we set
d(λ0) = 0 if λ0 is not a root of P . In general we may expand R(λ) near λ0 as:

R(λ) = R−d(λ0)(λ0)
(λ− λ0)d(λ0) + · · · + R−1(λ0)

λ− λ0
+R0(λ0) +

∑
m≥1

Rm(λ0)(λ− λ0)m.

where for m ≥ −d(λ0), Rm(λ0) : Lp(X,F ) → W k,p(X,E) are bounded operators.
The relations R(λ)P (λ) = IdW k,p(E) and P (λ)R(λ) = IdLp(F ) that hold away form
the roots of P imply:∑

m+n=0

1
n!Rm(λ0)

∂nP

∂λn
(λ0) = IdW k,p(E),

∑
m+n=0

1
n!
∂nP

∂λn
(λ0)Rm(λ0) = IdLp(F ) (3.20)

and for any non-zero l ∈ Z:∑
m+n=l

1
n!Rm(λ0)

∂nP

∂λn
(λ0) = 0 =

∑
m+n=l

1
n!
∂nP

∂λn
(λ0)Rm(λ0). (3.21)
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Example 3.18. One can easily see from Example 3.15 that λ0 = 0 is a root of
order 1 of the operator dY + d∗

Y , and of order 2 for the operator ∆Y . The singular
parts of their resolvent can be computed with the above relations. For the operator
dY +d∗

Y , relations (3.21) for l = −1 imply that Rd+d∗

−1 (0) vanishes on the orthogonal
space to harmonic forms and maps into the space of harmonic forms. Relations
(3.20) imply that:

iRd+d∗

−1 (0)Jη = η = iJRd+d∗

−1 (0)η

for any translation-invariant harmonic form on Y . As J2 = −1 we obtain:

Rd+d∗

−1 (0) = iJ ◦ ph = iph ◦ J

where ph is the L2-orthogonal projection onto the space of harmonic forms. As the
Laplacian ∆Y is the square of the operator dY + d∗ this implies that:

R∆
−2(0) = (Rd+d∗

−1 (0))2 = (iJ)2p2
h = ph.

On the other hand, as the Fourier transform of ∆Y is an analytic function of the
variable λ2 it is easy to see that R∆

−1(0) = 0.

With these notations in hand, let D−1
t be the endomorphism of Lp(F )[t] map-

ping (it)j

j! v to (it)j+1

(j+1)! v for any v ∈ Lp(F ). This is a right inverse of Dt. Let us define
the operator Qλ0 : Lp(F )[t] → W k,p(E)[t] by:

Qλ0(Dt, D
−1
t ) =

∑
m≥−d(λ0)

Rm(λ0)Dm
t .

It maps polynomials of order m to polynomials of order at most m+ d(λ0). More-
over relations (3.20) and (3.21) imply the following:

Lemma 3.19. The map Qλ0 : Lp(F )[t] → W k,p(E)[t] is a right inverse of Pλ0.

Let us now turn our attention to the kernel of Pλ0 . It is non-trivial if and
only if λ0 is a root of P , which amounts to saying that the homogeneous equation
Pλ0u = 0 admits a non-trivial translation-invariant solution. Moreover, the kernel
of Pλ0 acting on polynomial sections in the variable t is always finite-dimensional,
and the degree of its elements is bounded above by the order of the root λ0 minus
one [3]. In particular, if λ0 has order 1 the only polynomial solutions of Pλ0u = 0
are translation-invariant.

For any root λ0 of P , let us denote by Eλ0 the (finite-dimensional) space of
exponential solutions of Pu = 0 of rate λ0, and E ∗

λ0
the space of exponential

solutions of P ∗v = 0 of rate λ0 (note that P (λ)∗ = P ∗(λ) for any λ ∈ C). As we

66



are mainly interested in the real roots of P , we denote by λ1, ..., λm the real roots
and define:

E =
m⊕

j=1
Eλj

, E ∗ =
m⊕

j=1
E ∗

λj
.

We shall now define a pairing E × E ∗ → C and derive its basic properties.
Let χ : R → R be a smooth function such that χ ≡ 0 in a neighbourhood of
−∞ and χ ≡ 1 in a neighbourhood of +∞. We define a sesquilinear pairing
(·, ·) : E × E ∗ → C by the integral:

(u, v) =
∫
R

⟨P (Dt) [χ(t)u(t)] , v(t)⟩ dt. (3.22)

Here, we denote by ⟨·, ·⟩ the L2-product on the compact manifold X. This is well-
defined as P (Dt) [χ(t)u(t))] is compactly supported for any u ∈ E . Further, it does
not depend on the choice of function χ. Indeed, if χ̃ is another smooth function
that satisfies the same assumptions, define χτ = (1 − τ)χ + τ χ̃ for τ ∈ [0, 1]. As
∂χτ

∂τ
(t)u(t) is compactly supported, we can integrate by parts to obtain:

d

dτ

∫
R

⟨P (Dt) [χτ (t)u(t)] , v(t)⟩ dt =
∫
R

〈
P (Dt)

[
∂χτ

∂τ
(t)u(t)

]
, v(t)

〉
dt = 0

as P ∗(DT )v(t) = 0. Therefore the pairing does not depend on the choice of χ.
An important consequence of this observation is that Eλi

is orthogonal to E ∗
λj

for the pairing (·, ·) unless i = j. Indeed, let u ∈ Eλi
and v ∈ E ∗

λj
, and replace χ(t)

by χ(t− τ) in the definition of the pairing, for τ ∈ R. Then we can compute by a
change of variables:

∫
R

⟨P (Dt) [χ(t− τ)u(t)] , v(t)⟩ dt = ei(λi−λj)τ

(u, v) +
∑
l≥1

al(u, v)τ l


where the coefficients al(u, v) are independent of τ , and only finitely many of them
are non-zero. As this has to be equal to (u, v) for all τ ∈ R, this implies al = 0 for
l ≥ 1 and (u, v) = 0 when i ̸= j.

The key property of the pairing (·, ·) is the following:

Lemma 3.20. The pairing (·, ·) is non-degenerate.

Proof. By the above remarks it suffices to show that the restriction of (·, ·) to
Eλj

× E ∗
λj

is non-degenerate. Consider first v ∈ kerP ∗(λj), so that ṽ(t, x) =
eiλjtv(x) is an element of E ∗

λj
. Considering v as an element of L2(F )[t], we define

u(t, x) = Qλj
v. This is a polynomial of order at most d(λj) in the variable t, and

it satisfies:
Pλj

(Dt)u(t) = v.
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Differentiating this expression in the variable t, it follows that:

Pλj
(Dt)[Dtu(t)] = 0

so that ũ(t, x) = eiλjtDtu(t, x) is in Eλj
. Let us now pick a function χ as above

and compute:∫
R

〈
P (Dt) [χ(t)ũ(t)] , eiλjtv

〉
dt =

∫
R

〈
Pλj

(Dt) [χ(t)Dtu(t)] , v
〉
dt

= 1
i

∫ d

dt

〈
Pλj

(Dt) [χ(t)u(t)] , v
〉
dt− 1

i

∫ 〈
Pλj

(Dt) [χ′(t)u(t)] , v
〉
dt

= 1
i
⟨v, v⟩

which holds because P (Dt)[χ(t)u(t)] ≡ v as t goes to +∞ and P (Dt)[χ(t)u(t)] = 0
as t goes to −∞. Thus we have (ũ, ṽ) = −i∥v∥2

L2 which is non-zero when v ̸= 0.
In general, let v(t, x) be an element of E ∗

λj
of degreem. Then eiλjtDm

t e
−iλjtv(t, x)

is a non-zero element of E ∗
λj

of degree zero. By the above argument there exists
u(t, x) in Eλj

such that (u, eiλjtDm
t e

−iλjtv) ̸= 0. Moreover one can easily check
that:

(u, eiλjtDm
t e

−iλjtv) = (eiλjtDm
t e

−iλjtu, v)

and eiλjtDm
t e

−iλjtu ∈ Eλj
. Hence the pairing (·, ·) is non-degenerate.

Example 3.21. The space of translation-invariant solutions of the operator dY +d∗
Y

acting on ΛCT
∗Y is:

Ed+d∗ = E ∗
d+d∗ = {α + dt ∧ β, α, β ∈ C∞(ΛCT

∗X), ∆Xα = ∆Xβ = 0}

If α + dt ∧ β, α′ + dt ∧ β′ ∈ E we can compute their pairing:

(α + dt ∧ β, α′ + dt ∧ β′) =
∫

⟨(dY + d∗
Y )(χ(τ)α + dt ∧ β), α′ + dt ∧ β′⟩dτ

=
∫
χ′(τ)⟨dt ∧ α− β, α′ + dt ∧ β′⟩dτ

= ⟨α, β′⟩ − ⟨β, α′⟩

which is clearly non-degenerate.
For the Laplacian ∆Y acting on q-forms, the spaces Eq and E ∗

q are both isomor-
phic to the space q-forms that can be written as η0 + tη1, where ηi = αi + dt ∧ βi

with αi ∈ Ωq
C(X) and βi ∈ Ωq−1

C (X) harmonic. In the same way one can easily
derive:

(η0 + tη1, η
′
0 + tη′

1) = ⟨α0, α
′
1⟩ + ⟨β0, β

′
1⟩ − ⟨α1, α

′
0⟩ − ⟨β1, β

′
0⟩.
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3.2.3 Existence of solutions. In this part we prove Theorem 3.10, beginning by
the case p ≥ 2. Let us consider a translation-invariant elliptic differential operator
P : C∞(E) → C∞(F ) of order k with real roots λ1, . . . , λm. For 1 ≤ j ≤ m,
let d(λj) be the order of the root λj. Considering the resolvent as a family of
(compact) operators from L2(F ) to L2(E), we have a decomposition of the form:

R(λ) = Rr(λ) +
m∑

j=1

d(λj)∑
l=1

R−l(λj)
(λ− λj)l

(3.23)

where the regular part of the resolvent Rr(λ) is an analytic function from a neigh-
bourhood of the real line in C to B(L2(F ), L2(E)). We will denote the second
term of the right-hand side of equation (3.23) by Rs(λ); this is the singular part
of the resolvent.

Since p ≥ 2, a section f ∈ Lp
c(F ) can be considered as an element of Lp(R, L2(F )),

which has compact essential support. We want to find a solution of equation (3.15)
through the study of the Fourier transformed equation (3.16). As the resolvent
has poles we need to make sense of the expression û(λ) = R(λ)f̂(λ), or rather of
its inverse Fourier transform.

Differentiating the identity P (λ)R(λ) = IdL2(F ) and using the bounds of Theo-
rem 3.16, we see that the resolvent and all its derivatives have at most polynomial
growth at infinity. Since this also true of the singular part of the resolvent, which
is bounded at infinity as well as all of its derivatives, then the same holds for the
regular part of the resolvent. On the other hand, from Theorem 3.16 we have a
bound:

∥R(λ)∥ + ∥λR′(λ)∥ = O
(1
λ

)
as |λ| → ∞. Further this bound clearly also holds for the singular part of the
resolvent. Therefore there exists a constant C > 0 such that for all λ ∈ R we have:

∥Rr(λ)∥ + ∥λR′
r(λ)∥ ≤ C

Thus Theorem 3.12 implies thatRr(λ) induces a bounded mapQr : Lp(R, L2(F )) →
Lp(R, L2(E)) defined as:

Qr[v](t) = 1
2π

∫
eiλtRr(λ)v̂(λ)dλ, ∀v ∈ Lp(R, L2(E)). (3.24)

Define ur = Qr[f ] ∈ Lp(R, L2(E)). By definition we have ûr(λ) = Rr(λ)f̂(λ) for
λ ∈ R. As f has compact support, its Fourier transform f̂(λ) can be continued as
an analytic L2(F )-valued function of the variable λ ∈ C. Moreover, Rr(λ) has no
poles in a complex strip of the form {| im λ| < δ} for some δ > 0, and therefore
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ûr(λ) can be extended as an analytic L2(E)-valued function for λ varying in a
neighbourhood of the real line in C.

We now deal with the singular part of the resolvent. Our main problem is
that we cannot directly make sense of the inverse Fourier transform of Rs(λ)f̂(λ).
Nevertheless, it is natural to define the following:

us(t) = Qs[f ](t) =
m∑

j=1

d(λj)∑
l=1

ileiλjt
∫ t

−∞

(t− τ)l−1

(l − 1)! e
−iλjτR−l(λj)f(τ)dτ. (3.25)

Note that the integrals are well-defined because f has compact essential support,
and therefore us is a map R → L2(E). If we define Hl,λ(t) = eiλjt iltl−1

(l−1)!H(t)
where H is the Heaviside step function, then we can write us more compactly as
a convolution:

us =
m∑

j=1

d(λj)∑
l=1

Hl,λj
∗ (R−l(λj)f). (3.26)

In general us is not in Lp(R, L2(E)), but its restriction to any finite interval (−T, T )
is Lp. We will shortly provide more precise estimates, but we first want to prove
that u = ur + us satisfies Pu = f .

In order to do this, let us first compute P (Dt)ur(t), considering Dt as a weak
derivative wherever appropriate. Taking the Fourier transform, we may compute
P (λ)ur(λ) for λ ∈ R\{λ1, ..., λm} as follows. As P (λ)R(λ) = IdL2(F ), we have:

P (λ)ûr(λ) = f̂(λ) − P (λ)Rs(λ)f̂(λ).

For each root λj, we can expand P (λ) in Taylor series around λj to compute:

P (λ)
d(λj)∑
l=1

R−l(λj)
(λ− λj)l

=
∑

n

d(λj)∑
l=1

(λ− λj)n−l

n!
∂nP

∂λn
(λj)R−l(λj).

By relations (3.21), the expansion of the sum in powers of λ − λj is polynomial,
that is the sum of the terms containing negative powers of λ − λj vanishes. This
yields:

P (λ)ûr(λ) = f̂(λ) −
m∑

j=1

∑
l≥1, n−l≥0

(λ− λj)n−l

n!
∂nP

∂λn
(λj)R−l(λj)f̂(λ)

which holds for λ ̸= λj. As both sides of the equality are analytic in the variable
λ, this is in fact true for all λ contained in a neighbourhood of the real line in C.
We can therefore take the inverse Fourier transform to obtain:

P (Dt)ur(t) = f(t)−
m∑

j=1

∑
l≥1, n−l≥0

eiλjtDn−l
t

[
1
n!
∂nP

∂λn
(λj)R−l(λj)e−iλjtf(t)

]
. (3.27)
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Next, we compute P (Dt)us. Let us remark that for n < l we have the following
identity:

eiλtDn
t e

−iλtHl,λ = (Dt − λ)nHl,λ = Hl−n,λ (3.28)

and for n = l, we have:
eiλtDl

te
−iλtHl,λ = δ (3.29)

where δ here is a Dirac mass centred at t = 0. Writing P (Dt) = eiλjtPλj
(Dt)e−iλjt

where Pλj
(Dt) is the operator defined in §3.2.2, we have

P
d(λj)∑
l=1

Hl,λj
∗ (R−l(λj)f) =

∑
n≥0

d(λj)∑
l=1

eiλjtDn
t e

−iλjtHl,λj
∗
[

1
n!
∂nP

∂λn
(λj)R−l(λj)f

]
.

If we split the sum into two parts, we see using (3.14) and (3.29) that the sum of
the terms for which n ≥ l is equal to:

∑
n≥l

d(λj)∑
l=1

eiλjtDn−l
t

[
1
n!
∂nP

∂λn
(λj)R−l(λj)e−iλjtf(t)

]
. (3.30)

On the other hand, the sum of the terms for which n < l can be computed using
(3.14) and (3.28), and in fact this sum vanishes by (3.21):

∑
n<l

d(λj)∑
l=1

Hl−n,λj
∗
[

1
n!
∂nP

∂λn
(λj)Rl(λj)f

]
= 0. (3.31)

Comparing with (3.27), this proves that Pu = f . Once we prove that us is in
Lp(I, L2(E)) for any finite interval I ⊂ R, it will follow from Proposition 3.14 that
u is W k,p

loc . Thus we have a well-defined map Q = Qr + Qs : Lp
c(F ) → W k,p

loc (E)
which is a right inverse for P .

It remains to prove the estimates of Theorem 3.10. Let T ≥ 1 and f ∈ Lp
c(F )

with essential support contained in (−T, T ) ×X. For −T − 1 ≤ t ≤ T + 1, we can
write:

us(t) =
m∑

j=1

d(λj)∑
l=1

∫ ∞

0

ilτ l−1

(l − 1)!e
iλjτR−l(λj)f(t− τ)dτ

=
m∑

j=1

d(λj)∑
l=1

∫ 2T +1

0

ilτ l−1

(l − 1)!e
iλjτR−l(λj)f(t− τ)dτ

In particular the L2-norm of us(t) is bounded by:

∥us(t)∥L2(E) ≤
m∑

j=1

d(λj)∑
l=1

∫ 2T +1

0

τ l−1

(l − 1)!∥R−l(λj)f(t− τ)∥L2(F )dτ

≤ C
∫ +∞

−∞
χ(0,2T +1)(τ)

 m∑
j=1

d(λj)∑
l=1

τ l−1

(l − 1)!

 ∥f(t− τ)∥L2(F )dτ
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where C is a constant depending only on the maps R−l(λj) and χ(0,2T +1) is the char-
acteristic function of the interval (0, 2T+1). The function χ(0,2T +1)(τ)

(∑m
j=1

∑d(λj)
l=1

τ l−1

(l−1)!

)
is L1, and since d is the maximum of the d(λj) it has L1-norm bounded by CT d

for some constant C > 0 that does not depend on T ≥ 1. Thus, as a function of
the variable t ∈ (−T −1, T +1), the function ∥us(t)∥L2(E) is bounded above by the
convolution of the L1-function χ(0,2T +1)(τ)

(∑m
j=1

∑d(λj)
l=1

τ l−1

(l−1)!

)
and the Lp-function

∥f(τ)∥L2 , and therefore Young’s inequality yields:

∥us∥Lp((−T −1,T +1),L2(E)) ≤ CT d∥f∥Lp(R,L2(E)).

Consequently, the restriction of u = us +ur to (−T − 1, T + 1) ×X is in Lp((−T −
1, T + 1), L2(E)) for any T ≥ 1. By Proposition 3.14, u|(−T,T )×X ∈ W k,p(ET ) and:

∥u∥W k,p(ET ) ≤ C(∥f∥Lp(F T +1) + ∥u∥Lp((−T −1,T +1),L2(E)))
≤ C(∥f∥Lp(F ) + ∥ur∥Lp(R,L2(E)) + ∥u∥Lp((−T −1,T +1),L2(E)))
≤ C(∥f∥Lp(F ) + ∥f∥Lp(R,L2(F ))) + CT d∥f∥Lp(R,L2(F )))
≤ CT d∥f∥Lp(F )

which holds since the Lp(E)-norm of f controls its Lp(R, L2(F ))-norm. Moreover,
we can apply the same argument for any arbitrarily large T ′ ≥ T to deduce that
u ∈ W k,p

loc (E). This finishes the proof of Theorem 3.10 in the case where p ≥ 2.
The case 1 < p < 2 can be treated by duality, since the formal adjoint P ∗ is also a
translation-invariant elliptic operator, and the maximal order of the real roots of
P ∗ is also d.

In the remainder of this part, we shall comment on the asymptotic behaviour
of the solutions constructed above. Let f ∈ Lp

c(F ) and let u, us and ur be defined
as above. Assume that the essential support of f is contained in (−T, T ) × X.
Then, outside of this compact set we have:

Pus = 0 = Pur.

As Pu = 0 in this domain it suffices to show that Pus = 0. This is a consequence
of (3.30) which yields:

Pus =
∑
n≥l

d(λj)∑
l=1

eiλjtDn−l
t

[
1
n!
∂nP

∂λn
(λj)R−l(λj)e−iλjtf(t)

]
.

For |t| > T the expression under brackets vanishes identically, which proves our
claim.

An important consequence of this fact is that ur has exponential decay as
|t| → ∞, in the sense that the W k,p-norm of eδρur is finite for some δ > 0, where
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ρ denotes an arbitrary smooth function on Y equal to |t| when |t| ≥ 1. This
can be seen as a particular case of Lockhart–McOwen theory (see §3.3.1). On
the other hand, it is easy to see from its definition that us vanishes identically in
the domain {t < −T}, and more interestingly, us is equal to the restriction of a
polyhomogeneous solution of Pu = 0 in the domain {t > T}. Indeed for t > T

(3.25) reads:

us(t) =
m∑

j=1

d(λj)∑
l=1

ileiλjt
∫ T

−T

(t− τ)l−1

(l − 1)! e
−iλjτR−l(λj)f(τ)dτ

which is manifestly polyhomogeneous. Let us denote the right-hand-side uf ∈ E .
We may use the pairing (·, ·) introduced in §3.2.2 to characterise uf by duality:

Lemma 3.22. With the above notations, (uf , v) = ⟨f, v⟩ for any v ∈ E ∗.

Proof. Let χ be a smooth function such that χ ≡ 1 in (−∞, 0] and χ ≡ 0 in [1,∞),
and let χτ (t) = χ(t − τ). For any τ > T we have the equality ⟨χτPu, v⟩ = ⟨f, v⟩.
On the other hand, let us prove that ⟨Pχτu, v⟩ = 0 for any τ ∈ R. If τ, τ ′ ∈ R,
χτ − χτ ′ has compact support and hence:

⟨Pχτu, v⟩ − ⟨Pχτ ′u, v⟩ = ⟨P (χτ − χτ ′)u, v⟩ = ⟨(χτ − χτ ′)u, P ∗v⟩ = 0

Therefore the value of ⟨Pχτu, v⟩ = 0 does not depend on τ . Hence we may send τ
to −∞, and as u(t) has exponential decay as t → −∞ we obtain ⟨Pχτu, v⟩ = 0.

It follows that ⟨f, v⟩ = − limτ→∞⟨[P, χτ ]u, v⟩. Given the exponential decay of
ur(t) and its k first derivatives as t → ∞, this yields:

⟨f, v⟩ = − lim
τ→∞

⟨[P, χτ ]us, v⟩ = lim
τ→∞

⟨[P, 1 − χτ ]us, v⟩ = (uf , v)

as claimed.

Example 3.23. Consider the case of the Laplacian ∆Y acting on q-forms. The
singular part of the resolvent is λ−2ph, where ph is the projection on the space
of harmonic forms. Thus if η is a q-form on Y supported in [−T, T ] × X and we
denote by ξ(τ) the L2-projection of ητ onto the space of harmonic forms, and write
ξ(τ) = α(τ) + dt ∧ β(τ), we have by definition:

uη(t) = i2
∫ T

−T
(t− τ)ξ(τ)dτ =

∫ T

−T
τα(τ) + dt∧ τβ(τ)dτ − t

∫ T

−T
α(τ) + dt∧ β(τ)dτ.

For any v(t) = α0 +dt∧β0 +t(α1 +dt∧β1) ∈ Eq we can use the formula of Example
3.21 to check:

(uη, v) =
∫ T

−T
τ(⟨α(τ), α1⟩ + ⟨β(τ), β1⟩) + ⟨α(τ), α0⟩ + ⟨β(τ), β0⟩dτ = ⟨η, v⟩.
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3.3 The matching problem

In this section we explain the main construction of this chapter. In §3.3.1 we
review the mapping properties of adapted operators on EAC manifolds. In §3.3.2
we explain our method for constructing approximate solutions of the equation
PTu = f and show that it can be reduced to a finite-dimensional linear system. In
§3.3.3 we prove that this system admits a solution if and only if f is orthogonal
to the substitute cokernel defined in §3.1.2. Under the restricting assumption that
the indicial operator of the gluing problem has only one real root, this enables us
to prove Theorem 3.6. We also discuss other possible conditions which would yield
the same result.

3.3.1 Analysis on EAC manifolds. The mapping properties of adapted oper-
ators on EAC manifolds have been studied by Lockhart–McOwen in [89], and we
will give a brief review of their theory. The right function spaces to consider in this
situation are weighted Sobolev spaces. Let (Z, g) be an EAC manifold asymptotic
to a cylinder Y = R×X at infinity, (E, h,∇) an adapted bundle, and pick a cylin-
drical coordinate function ρ : Z → R>0. If u is a smooth compactly supported
section of E, we can define its W l,p

ν -norm (p ≥ 1, l ∈ N, ν ∈ R) as follows:

∥u∥W l,p
ν

=
l∑

j=0
∥eνρ∇ju∥Lp .

Note that for ν = 0 this is just the usual W l,p norm. The weighted Sobolev space
W l,p

ν (E) can be defined as the completion of C∞
c (E) with respect to the W l,p

ν -
norm. We also denote by C∞

ν (E) the space of smooth sections of E that have all
derivatives bounded by O(e−νρ).

Let P be an adapted elliptic differential operator P : C∞(E) → C∞(F ) of order
k, and let P0 : C∞(E0) → C∞(F 0) be its indicial operator. The mapsW k+l,p

ν (E) →
W l,p

ν (F ) induced by P are bounded linear operators. Moreover, combining the
estimates of Proposition 3.13 with standard interior elliptic estimates, we obtain
a priori estimates of the form:

∥u∥W k+l,p
ν

≤ C
(
∥Pu∥W l,p

ν
+ ∥u∥Lp

ν

)
.

Contrary to the compact case, these estimates are not enough to ensure that the
maps induced by P on weighted spaces are Fredholm, essentially because of the
failure of compactness in the Sobolev embedding theorem between spaces with the
same weight. Nevertheless, Lockhart–McOwen showed that the Fredholm property
holds if and only if ν is not an indicial root of P0. When ν /∈ DP0 we denote by
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indν(P ) the index of the maps induced by P on spaces of weight ν. The following
theorem summarises the mapping properties of P in weighted spaces and the index
change formula as proved in [89].

Theorem 3.24. Let p > 1 and l ∈ N. Then the following holds.

(i) The maps W k+l,p
ν (E) → W l,p

ν (F ) induced by P are Fredholm if and only if
ν /∈ DP0. In that case, the image of P is the L2-orthogonal complement of
kerP ∗ ∩ C∞

−ν(F ).

(ii) If ν < ν ′ are not indicial roots of P , then the index change is given by

indν(P ) − indν′(P ) =
∑

ν<im λ<ν′
dim Eλ.

By elliptic regularity, the solutions of the homogeneous equation Pu = 0 are
smooth. An important property of solutions with sub-exponential growth is that
they have a polyhomogeneous expansion at infinity. More precisely, if 0 < ν ′ −ν <

µ and ν, ν ′ /∈ DP , then the following holds. For any u ∈ C∞
ν such that Pu = 0,

there exists u′ ∈ C∞
ν′ such that when ρ → ∞, the difference u − u′ is an element

of ⊕ν<im λ<ν′ Eλ under the usual identification of the domain {ρ > 1} with the
cylinder (1,∞) ×X.

From now on, let us assume that 0 is an indicial root of P0, and let:

σ = min{µ, min
ν∈DP0 \{0}

|ν|} (3.32)

Take any δ ∈ (0, σ). Recall that we defined K as the kernel of P acting on sections
with sub-exponential growth, and K0 the kernel of P acting on decaying sections.
In particular, K is the kernel of P acting on W k,p

−δ (E) and K0 the kernel of the
action of P on W k,p

δ (E). In §3.1.2 we defined a map κ : K → E such that any
element v ∈ K is asymptotic to κ(v). Hence K0 is the kernel of κ. Similarly
we defined K ∗, K ∗

0 and κ∗ : K ∗ → E ∗. Let us point out that the index change
formula in Theorem 3.24 implies:

dim im κ+ dim im κ∗ = dim E . (3.33)

We want to study equations of the type Pu = f when f has exponential decay,
say f ∈ Lp

δ . By Theorem 3.24, the obstructions to solve this equation for u ∈ W k,p
δ

lie in K ∗, whereas the obstructions to solve it in W k,p
−δ lie in K ∗

0 . Here, we want to
use the pairing defined in §3.2.2 to give a precise description of these obstructions
and of the asymptotic behaviour of solutions in W k,p

−δ .
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Let v ∈ K ∗ be asymptotic to κ∗(v) = v0 ∈ E ∗ and consider u ∈ C∞(E)
asymptotic to u0 ∈ E , such that u− u0 and all their derivatives are exponentially
decaying as ρ → ∞. The L2 product ⟨Pu, v⟩ is well-defined as Pu decays expo-
nentially. It turns out that its value only depends on the asymptotic data. More
precisely we claim that:

Lemma 3.25. With the above notations, ⟨Pu, v⟩ = (u0, v0).

Proof. Let χ : R → R be a smooth function such that χ ≡ 0 in (−∞, 0] and χ ≡ 1
in [1,∞), and let χτ (t) = χ(t− τ) for τ ∈ R. Then for any τ ≥ 1 we have:

⟨Pu, v⟩ = ⟨Pχτ (ρ)u, v⟩ + ⟨P (1 − χτ (ρ))u, v⟩
= ⟨Pχτ (ρ)u, v⟩ + ⟨(1 − χτ (ρ))u, P ∗v⟩

= ⟨Pχτ (ρ)u, v⟩

since P ∗v = 0. Thus ⟨Pu, v⟩ = limτ→∞⟨Pχτ (ρ)u, v⟩. As u − u0, v − v0 and the
coefficients of P −P0 decay exponentially as ρ → ∞, as well as all derivatives, this
implies:

⟨Pu, v⟩ = lim
τ→∞

⟨P0χτu0, v0⟩ = (u0, v0)

since ⟨P0χτu0, v0⟩ = (u0, v0) for any τ ∈ R.

As a consequence of this lemma, im κ and im κ∗ are orthogonal for the pairing
(·, ·). Together with equality (3.33), this implies that im κ is exactly the orthogonal
space of im κ∗ for the pairing (·, ·).

Let us denote by K ∗
+ the subspace of K orthogonal to K ∗

0 for the L2-product,
so that κ∗ induces an isomorphism between K ∗

+ and im κ∗. We also choose an
arbitrary complement A0 of im κ in E . Let m = dim im κ∗. Pick smooth sections
h1, . . . , hm which are asymptotic to a basis of A0 at infinity, with the difference
and all their derivatives exponentially decaying, and denote by A ⊂ C∞(E) the
vector space they span. By Lemma 3.25 we may choose a basis g1, . . . , gm of K ∗

+

such that ⟨Phi, gj⟩ = δij for all 1 ≤ i, j ≤ m.
Let f ∈ Lp

δ be a section of F , and w be the L2-projection of f onto K ∗
0 . Let

us write:
f = f ′ +

m∑
j=1

⟨f, gj⟩Phj + w.

where f ′ ∈ Lp
δ is by construction orthogonal to the obstruction space K ∗. As

|⟨f, g⟩| ≤ C∥f∥Lp
δ
∥g∥Lq

−δ
for any g ∈ K ∗, where q is the conjugate exponent of p

and C > 0 is some constant, we have ∥f ′∥Lp
δ

≤ C ′∥f∥Lp
δ

for some universal constant
C ′ > 0. By Theorem 3.24 there exists u′ such that Pu′ = f ′ and ∥u′∥W k,p

δ
≤

C ′′∥f ′∥Lp
δ
. This proves the following:
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Proposition 3.26. For any p > 1 and 0 < δ < σ, there exists a constant C > 0,
depending only on p and δ, such that the following holds. Let f ∈ Lp

δ(F ), and let
w by its L2-projection onto K0. Then there exists a section u′ ∈ W k,p

δ (E) with
∥u′∥W k,p

δ
≤ C∥f∥Lp

δ
and such that

P

u′ +
m∑

j=1
⟨f, gj⟩hj

 = f − w.

3.3.2 Characteristic system. In the same setup as Section 3.1, we now consider
the gluing problem of two adapted operators P1, P2 of order k on EAC manifolds
Z1, Z2. For the present discussion there are no restrictions on the real roots
of the indicial operator P0. By definition, there is a compact K1 ⊂ Z1 and an
orientation-preserving diffeomorphism ϕ1 : (0,∞) ×X → Z1\K1, and we picked a
positive cylindrical coordinate function ρ1 on Z1 such that ρ1(ϕ1(t, x)) = t when
t ≥ 1 and ρ1 < 1 everywhere else in Z1. As in Section 3.1 we fix a cutoff function
χ : R → [0, 1] such that χ ≡ 0 in (−∞,−1

2 ] and χ ≡ 1 in [1
2 ,∞). For τ ∈ R

we keep our usual notation χτ (t) = χ(t− τ). It will be convenient to introduce a
family ζ1

τ : Z1 → [0, 1] of cutoff functions for the construction. For τ ≥ 0 define:

ζ1
τ (z) =

0 if z ∈ K1

χ(t− τ − 1
2) if z = ϕ1(t, x), (t, x) ∈ (0,∞) ×X

.

We similarly define a family of cutoff functions on Z2, denoted by ζ2
τ for τ ≥ 0.

Consider now the compact manifold MT obtained by gluing the compact domains
{ρ1 ≤ T + 2} ⊂ Z1 and {ρ2 ≤ T + 2} ⊂ Z2 along the annulus {T ≤ ρi ≤ T + 2}.
We can define a family of cutoff functions ζτ : MT → [0, 1] for 0 ≤ τ ≤ T by
patching together ζ1

τ with ζ2
τ in the following way:

ζτ ≡

ζ1
τ if ρT ≤ 0
ζ2

τ if ρT ≥ 0
.

Note that the support of ζτ is diffeomorphic to the finite cylinder [−T − 1 + τ, T +
1 − τ ] ×X.

We now turn to the gluing problem of two adapted operators Pi : C∞(Ei) →
C∞(Fi) as described in §3.1.1. Our goal is to prove that we can construct solutions
of the equation PTu = f for f taking values in a complement of the substitute
cokernel introduced in §3.1.2. We shall do this by considering three regions in MT :
the neck region {|ρT | ≤ T} for which our main tool is Theorem 3.10, and the two
compact regions {ρT ≤ 0} and {ρT ≥ 0}, for which we will use weighted analysis
on Z1 and Z2 in the form of Proposition 3.26. The crucial point of the construction
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is to understand the interactions between these three regions, especially in terms
of the obstructions to solving the equation Piu = f on each Zi. Using the pairing
(·, ·) defined in §3.2.2 in order to implicitly keep track of these obstructions, we will
be able to essentially reduce this problem to a finite-dimensional linear system.

From now on we fix p > 1 and work with Sobolev spaces W l,p. Let f ∈ Lp(FT )
be an arbitrary section. We may identify the section ζ1f with a section of the
translation-invariant vector bundle F 0 over the cylinder Y = R × X, which we
denote by f0. Moreover, the essential support of f0 is contained in the finite
cylinder [−T, T ] × X. Note that the Sobolev norm of sections supported in the
neck region of MT and the Sobolev norm of sections supported in the finite cylinder
[−T, T ] ×X are equivalent. Hence, we have a bound:

∥f0∥Lp ≤ C∥f∥Lp .

By Theorem 3.10, the operator P0 admits a right inverse Q0 : Lp
c(F 0) → W k,p

loc (E0).
Thus we can define u0 = Q0f0, which satisfies P0u0 = f0. Using the cutoff function
ζ0 to identify ζ0u0 with a section of ET → MT , one has:

f − PT ζ0u0 = f − [PT , ζ0]u0 − ζ0PTu0

= (1 − ζ1)f − [PT , ζ0]u0 − ζ0(PT − P0)u0.

Note that the section (1 − ζ1)f − [PT , ζ0]u0 is supported in the compact region
{|ρT | ≥ T}. Moreover the operator ζ0(PT − P0) vanishes in the region {|ρT | ≤ 1

2}
so that we may write:

f − PT ζ0u0 = f1 + f2 (3.34)

where f1 = χ(ρT )(f − PT ζ0u0) can be identified with a section of F1 supported in
{ρ1 ≤ T + 1} ⊂ Z1, and f2 = (1 − χ(ρT ))(f − PT ζ0u0) can be identified with a
section of F2 over {ρ2 ≤ T + 1} ⊂ Z2. Both sections are Lp-bounded.

From now on we fix some δ ∈ (0, σ). As the coefficients of Pi − P0 and all
their derivatives have exponential decay as ρi → ∞, the Lp-norm of f controls the
Lp

δ-norms of f1 and f2. More precisely, the following estimates hold:

Lemma 3.27. Let d be the maximal order of the real roots of P0. Then there exists
a constant C > 0 such that:

∥fi∥Lp
δ

≤ CT d∥f∥Lp , i = 1, 2.

Proof. Let us prove the estimate for f1, which can be written as:

f1 = (1 − χ(ρT ))((1 − ζ1)f − [PT , ζ0]u0 − ζ0(PT − P0)u0).
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The term (1 − χ(ρT ))(1 − ζ1)f is supported in the compact region {ρ1 ≤ 2} ⊂ Z1

and therefore satisfies:

∥(1 − χ(ρT ))(1 − ζ1)f∥Lp
δ

≤ e2δ∥f∥Lp

since the function (1 − χ(ρT ))(1 − ζ1) is bounded by 1. On the other hand, the
second term (1 − χ(ρT ))[PT , ζ0]u0 is supported in {ρ1 ≤ 1}, and the W k,p-norm of
u0 in the cylinder [−T − 1, T + 1] × X is bounded by CT d∥f∥ for some constant
C. As ζ0 and all its derivatives are uniformly bounded independently from T , this
yields an estimate:

∥(1 − χ(ρT ))[PT , ζ0]u0∥Lp ≤ C ′T d∥f∥Lp .

For the last term (1 − χ(ρT ))ζ0(PT − P0)u0, we can use the bound on the W k,p-
norm of u0 and the exponential decay of the coefficients of P1 − P0 and all their
derivatives to obtain a similar bound:

∥(1 − χ(ρT ))ζ0(PT − P0)u0∥Lp ≤ C ′′T d∥f∥Lp .

These three bounds prove the lemma.

Next we want to understand the obstructions to solving Piui = fi with ui ∈
W k,p

δ (Ei). Let us denote by ⟨·, ·⟩0 the L2-product on the cylinder R×X equipped
with its translation-invariant metric. The key result is the following:

Lemma 3.28. Choose arbitrary norms on K ∗
1 and K ∗

2 . For T → ∞ the following
holds. If g1 ∈ K ∗

1 and g1,T (t) = κ∗
1[g1](t+ T + 1), then:

⟨f1, g1⟩ = ⟨f, (1 − χT +1(ρ1))g1⟩ − ⟨(1 − χ)f0, g1,T ⟩0 +O
(
e−δT ∥f∥Lp∥g1∥

)
.

If g2 ∈ K ∗
2 and g2,T = κ∗

2[g2](t− T − 1) then:

⟨f2, g2⟩ = ⟨f, (1 − χT +1(ρ2))g2⟩ + ⟨(1 − χ)f0, g2,T ⟩0 +O
(
e−δT ∥f∥Lp∥g2∥

)
.

Remark 3.29. In the statement of the lemma and in the following proof, the nota-
tion O(e−δT ∥f∥Lp∥gi∥) means that there is a constant C > 0, depending on p > 1,
δ ∈ (0, σ) and possibly on the choice of norms on K ∗

i but independent of T , f
and gi, such that

|O(e−δT ∥f∥Lp∥gi∥)| ≤ Ce−δT ∥f∥Lp∥gi∥.
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Proof. Notice first that for any τ ≤ T − 2 we have:

⟨f1, g1⟩ = ⟨(1 − χ(ρT ))f, g1⟩ − ⟨(1 − χ(ρT ))PT ζ0u0, g1⟩

= ⟨(1 − χ(ρT ))f, g1⟩ − ⟨(1 − χ(ρT ))PT ζτu0, g1⟩

since (ζτ − ζ0)u0 has support in {ρ1 ≤ T − 1} and P ∗
1 g1 = 0. Given the decay of

the coefficients of P1 − P0 we have:

⟨(1−χ(ρT ))PT ζT −2u0, g1⟩ = ⟨(1−χ)P0χ−2u0, g1,T ⟩0 +O
(
e−δT ∥f∥Lp∥g1∥

)
. (3.35)

Moreover 1 − χ(ρT ) = (1 − χT +1(ρ1)) with the usual identifications. Thus the
equality ⟨(1 − χ(ρT ))f, g1⟩ = ⟨f, (1 − χT +1(ρ1))g1⟩ clearly holds.

It remains to compute the value of ⟨(1 − χ)P0χ−2u0, g1,T ⟩0. By integration by
parts, for any τ ≤ −2 we have:

⟨(1 − χ)P0χ−2u0, g1,T ⟩0 = ⟨(1 − χ)P0χτu0, g1,T ⟩0. (3.36)

But now we can write Pχτu0 = χτf0 + [P0, χτ ]u0. As u0 and its derivatives of
order less than k have exponential decay at infinity and the differential operator
[P0, χτ ] has uniformly bounded coefficients and is supported in [τ − 1

2 , τ + 1
2 ] ×X,

it follows that
lim

τ→−∞
⟨(1 − χ)[P0, χτ ]u0, g1,T ⟩0 = 0

and therefore we can send τ → −∞ in (3.36) and obtain:

⟨(1 − χ)P0χ−2u0, g1,T ⟩0 = lim
τ→−∞

⟨(1 − χ)χτf0, g1,T ⟩0

= ⟨(1 − χ)f0, g1,T ⟩0

This proves the first equality of Lemma 3.28.
For the second equality we can prove as above that:

⟨f2, g2⟩ = ⟨f, χT +1(ρ2)g2⟩ − lim
τ→∞

⟨χP0(1 − χτ )u0, g2,T ⟩0 +O
(
e−δT ∥f∥Lp∥g2∥

)
.

(3.37)
Then for τ large enough we have:

⟨χP0(1 − χτ )u0, g2,T ⟩0 = ⟨χf0, g2,T ⟩0 + ⟨χ[P0, 1 − χτ ]u0, g2,T ⟩0

−→ ⟨χf0, g2,T ⟩0 − (uf0 , g2,T )

as τ → ∞, where uf0 ∈ E is the polyhomogeneous solution defined in §3.2.3. By
Lemma 3.22, the last term is equal to:

(uf0 , g2,T ) = ⟨f0, g2,T ⟩0.

The second equality follows.
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In the next section, it will be useful to use a variation of the above lemma
for arbitrary solutions of the equation P0u = f0. Thus let v ∈ E and define
u′

0 = Q0f0 + v, and as above write:

f − PT ζ0u
′
0 = f ′

1 + f ′
2 (3.38)

where f ′
i ∈ Lp

δ(Fi). As a corollary of Lemma 3.28, we can describe the obstructions
to solving Piu = f ′

i as follows.

Corollary 3.30. Choose arbitrary norms on E , K ∗
1 and K ∗

2 . Then, if g1 ∈ K ∗
1

and g1,T (t) = κ∗
1[g1](t+ T + 1) it holds:

⟨f ′
1, g1⟩ = ⟨f, (1−χT +1(ρ1))g1⟩−⟨(1−χ)f0, g1,T ⟩0−(v, g1,T )+O

(
e−δT (∥f∥Lp + ∥v∥)∥g1∥

)
.

If g2 ∈ K ∗
2 and g2,T = κ∗

2[g2](t− T − 1) then:

⟨f ′
2, g2⟩ = ⟨f, (1−χT +1(ρ2))g2⟩+⟨(1−χ)f0, g2,T ⟩0+(v, g2,T )+O

(
e−δT (∥f∥Lp + ∥v∥)∥g2∥

)
.

Remark 3.31. As in the previous lemma, the notation O(e−δT (∥f∥Lp + ∥v∥)∥gi∥)
means that there is a constant C > 0, depending on p > 1, δ ∈ (0, σ), and possibly
on the choice of norms on E , K ∗

1 and K ∗
2 but independent of T , f , gi and v such

that
|O(e−δT (∥f∥Lp + ∥v∥)∥gi∥)| ≤ Ce−δT (∥f∥Lp + ∥v∥)∥gi∥.

So far, everything we did works without need to impose any conditions on the
real roots of the indicial operator P0. We now outline the construction which we
will perform in the next part and emphasise where the restricting assumption of
Theorem 3.6 come from. The general idea of our construction is to identify a
subspace of Lp(FT ) on which we can find approximate solutions of the equation
PTu = f with good estimates and a control on the error of the form ∥f−PTu∥Lp ≤
Ce−δT ∥f∥Lp for T large enough. Once we can achieve this, we will simply use an
iterative process to build exact solutions, by taking successive projections onto this
good subspace.

By taking cutoffs as above, we can solve the equation P0u = f0 on the cylinder,
with a general solution of the form u = Q0f0 + v for some arbitrary v ∈ E .
With the above notations, it remains to consider the equations Piui = f ′

i on
the EAC manifolds Z1 and Z2. The idea is to choose v appropriately so that
all the obstructions to finding decaying solutions ui ∈ W k,p

δ (Ei) vanish, up to
exponentially decaying errors. If this can be done, we just need to take cutoffs of
these solutions to build an approximate solution, up to an exponentially decaying
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term. Using Corollary 3.30 we have essentially reduced our linear PDE problem
to the following finite-dimensional system, where the unknown is v ∈ E :(v, g1,T ) = ⟨f, (1 − χT +1(ρ1))g1⟩ − ⟨(1 − χ)f0, g1,T ⟩0, ∀g1 ∈ K ∗

1

(v, g2,T ) = −⟨f, (1 − χT +1(ρ2))g2⟩ + ⟨(1 − χ)f0, g2,T ⟩0, ∀g2 ∈ K ∗
2

(3.39)

where we use the notations:

g1,T (t) = κ∗
1[g1](t+ T + 1), and g2,T = κ∗

2[g2](t− T − 1).

We call this system the characteristic system of our gluing problem. There are
obvious obstructions to finding a solution to this system. We need at least to
impose f to be orthogonal to all the sections of the form (1 − χT +1(ρi))gi with
gi ∈ Ki,0, as in this case gi,T = 0. Actually, a more careful examination of the
characteristic system shows that we need f to be orthogonal to the full substitute
cokernel. Indeed, a pair (g1, g2) ∈ K ∗

1 × K ∗
2 is matching at T if and only if

g1,T = g2,T with the above notations. Thus, if there exists v ∈ E solving the
system we must have

⟨f, (1 − χT +1(ρ1))g1 + (1 − χT +1(ρ2))g2⟩ = 0

for any pair (g1, g2) matching at T .
As a consequence, the substitute cokernel K ∗

T naturally arises as a space of
obstructions to constructing approximate solutions of PTu = f by our method.
In fact, we will see that this is also a sufficient condition (Lemma 3.36). Unfor-
tunately, the coefficients of this system vary analytically with T , and therefore
the rank of the system might drop at some points. Furthermore, the system is
generally underdetermined, with an obvious kernel formed by the subspace of E

orthogonal to all g1,T and g2,T , for gi varying in K ∗
i . Hence, even if the char-

acteristic system admits a solution v whenever f is orthogonal to the substitute
cokernel we might not be able to obtain reasonable estimates on the norm of v,
especially near the values of T at which the rank of the system drops. We shall
prove that these difficulties can be avoided in the case where the indicial operator
P0 has only one root, which will be sufficient for our applications.

3.3.3 Main construction. Let us first consider the case where P0 has a single
root λ0 of order 1, before generalising to any order. In that case, the elements of E

are of the form eiλ0tu(x) with u translation-invariant section of E0, and similarly
for E ∗. As a consequence, the matching condition (3.10) does not really depend
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on T , up to overall factors of e±iλ0(T +1). In particular, the dimensions of KT and
K ∗

T are independent of T :

dim KT = dim K0,1 + dim K0,2 + dim(im κ1 ∩ im κ2)

and similarly for the substitute cokernel K ∗
T . This implies that we can uniformly

bound the L2-orthogonal projections onto KT and K ∗
T :

Lemma 3.32. Let p > 1 and l ∈ N. Then for T large enough the norm of the
L2-orthogonal projection of W l,p(FT ) onto K ∗

T is bounded from above by a uniform
constant C1 > 0, depending on l and p but independent of T . Similarly, the norm
of the L2-orthogonal projection of W l,p(ET ) onto KT is bounded from above by a
uniform constant C ′

1 > 0.

Proof. This can be proved by fixing basis for K0,1, K0,2 and im κ1 ∩ im κ2 and
considering the corresponding basis of KT . By Gram–Schmidt orthonormalisation,
one can deduce an explicit expression for the L2-projection, from which the lemma
easily follows.

Let us now choose an arbitrary complement E ∗
1 of im κ∗

1 ∩ im κ∗
2 in im κ∗

1, and a
complement E ∗

2 of im κ∗
1∩im κ∗

2 in im κ∗
2. Thus we have a direct sum decomposition:

im κ∗
1 + im κ∗

2 = im κ∗
1 ∩ im κ∗

2 ⊕ E ∗
1 ⊕ E ∗

2 ⊂ E ∗.

Pick a complement E ′ of im κ1 ∩ im κ2 in E , so that the pairing

E ′ × (im κ∗
1 + im κ∗

2) → C

induced by (·, ·) is non-degenerate. For i = 1, 2 define Ei = im κi ∩ E ′. Then the
pairings:

E1 × E ∗
2 → C and E2 × E ∗

1 → C (3.40)

induced by (·, ·) are non-degenerate. Indeed, if u ∈ E1 is orthogonal to E ∗
2 then it

is orthogonal to im κ∗
1 + im κ∗

2 and therefore belongs to im κ1 ∩ im κ2, which means
that u = 0 as it is an element of E ′. On the other hand if v ∈ E ∗

2 is orthogonal
to E1, then it is orthogonal to im κ1 and to im κ2, which means that it belongs to
im κ∗

1 ∩ im κ∗
2 and thus v = 0 by definition of E ∗

2 . Therefore, if we define E0 as
the orthogonal space of E ∗

1 ⊕ E ∗
2 in E ′ for the above pairing, we have a direct sum

decomposition:
E ′ = E0 ⊕ E1 ⊕ E2.

This implies that the pairing

E0 × (im κ∗
1 ∩ im κ∗

2) → C (3.41)
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is non-degenerate. These conventions will be useful to put the system (3.39) in
a more tractable form. For definiteness we prefer to work in a complement of
im κ1 ∩ im κ2, as this is the kernel of the system. This allows us to prove:

Proposition 3.33. Let p > 1 and δ ∈ (0, σ). Then there exist constants C2, C3 >

0, depending on p and δ but not on T , such that for T large enough the following
holds. If f ∈ Lp(FT ) is L2-orthogonal to K ∗

T , then there exists u ∈ W k,p(ET )
L2-orthogonal to KT such that:

∥f − PTu∥Lp ≤ C2e
−δT ∥f∥Lp and ∥u∥W k,p ≤ C3T∥f∥Lp .

Remark 3.34. The constants C2 and C3 may depend on the geometric data of
the gluing problem (the manifolds Zi, the adapted bundles Ei and the matching
operators Pi); in this sense they are not universal. But once this gluing data is
fixed they only depend on p and δ, the point being that they do not depend on T .

Proof. For i = 1, 2, let us fix subspaces Ai ⊂ C∞(Ei) as in the discussion preceding
Proposition 3.26. The orthogonal space K ∗

i,+ of Ki,0 in Ki is isomorphic to im κ∗
i ,

so that the decomposition im κ∗
i = im κ∗

1 ∩ im κ∗
2 ⊕ E ∗

i induce a corresponding
decomposition K ∗

i,+ = K ∗
i,m ⊕ K ∗

i,⊥ (the subscript m stands for matching).
If f ∈ Lp(FT ) is orthogonal to the substitute cokernel, we can use the above

decompositions of E amd E ∗ to put the system (3.39) in the form:
(v0, κ

∗
1[g0]) = e−iλ0(T +1)⟨f, (1 − χT +1(ρ1))g0⟩ − ⟨(1 − χ)f0, κ

∗
1[g0]⟩0, ∀g0 ∈ K ∗

1,m

(v1, κ
∗
1[g1]) = e−iλ0(T +1)⟨f, (1 − χT +1(ρ1))g1⟩ − ⟨(1 − χ)f0, κ

∗
1[g1]⟩0, ∀g1 ∈ K ∗

1,⊥

(v2, κ
∗
2[g2]) = −eiλ0(T +1)⟨f, (1 − χT +1(ρ2))g2⟩ + ⟨(1 − χ)f0, κ

∗
2[g2]⟩0, ∀g2 ∈ K ∗

2,⊥

where we decompose any element v ∈ E ′ as v = v0 + v1 + v2 ∈ E0 ⊕ E1 ⊕ E2

and the factors e±iλ0(T +1) come from κ∗
1,T = eiλ0(T +1)κ∗

1 and κ2,T = e−iλ0(T +1)κ∗
2.

Non-degeneracy of the pairings (3.40) and (3.41) implies that this is of the form:

Av = bT (f) ∈ RN

where N = dim E ′ = dim im κ∗
1 +dim im κ∗

2 and A : E ′ → RN is an invertible linear
map which does not depend on T . Thus there is a unique solution v = A−1b(f),
and if we fix norms on E ′ and RN we have a uniform bound:

∥v∥ ≤ C∥bT (f)∥.

As the elements of K ∗
1 and K ∗

2 are bounded in C0 norm, each of the sections
(1−χT +1)gi have Lq-norm bounded by CT

1
q ∥gi∥, where q is the conjugate exponent

of p. Thus, we can deduce that the norm of bT (f) satisfies a bound of the form:

∥bT (f)∥ ≤ C ′T
1
q ∥f∥Lp .
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Hence ∥v∥ ≤ C ′′T
1
q ∥f∥Lp for a constant independent of T .

Following the idea outlined in the previous part, let us write:

f − PT (ζ0Q0f0 + ζ0v) = f1 + f2

with f1 ∈ Lp(F1) and f2 ∈ Lp(F2), each of the sections fi being supported in the
domain {ρi ≤ T + 2} ⊂ Zi. By Theorem 3.10, we have estimates:

∥ζ0Q0f0∥W k,p ≤ CT∥f0∥Lp ≤ C ′T∥f∥Lp .

Further, as v is uniformly bounded and ζ0v has support in a domain equivalent to
a finite cylinder [−T − 1, T + 1] ×X we have a bound:

∥ζ0v∥W k,p ≤ CT
1
p ∥v∥ ≤ C ′T∥f∥Lp .

As in the proof of Lemma 3.27, we can use the uniform bound on v to prove that
the weighted norms of f1 and f2 satisfy bounds:

∥fi∥Lp
δ

≤ CT∥f∥Lp .

We now consider the equations P1u1 = f1 on Z1 and P2u2 = f2 on Z2. By
Proposition 3.26, there exist wi ∈ K ∗

i,0, hi ∈ Ai and ui ∈ W k,p
δ (Ei) such that:

Pi(ui + hi) = fi − wi.

Moreover, our choice of v implies uniform bounds of the form:

∥ui∥W k,p
δ

≤ C∥fi∥Lp
δ

≤ C ′T∥f∥Lp , ∥hi∥ + ∥wi∥ ≤ C ′′e−δT ∥f∥Lp

for some uniform constants C ′ and C ′′. Taking cutoffs we can write:

fi − PT (χT +1(ρi)ui + χT +1(ρi)hi) = χT +1(ρi)wi + ri

where ri is an error term of the form

ri = (Pi − PT )(χT +1(ρi)ui + χT +1(ρi)hi) + [Pi, χT +1(ρi)](ui + hi).

As the coefficients of Pi − PT and their derivatives have exponential decay with
T , ui has exponential decay at infinity. Given the bound on hi, it follows that for
any 0 < ϵ < δ we can bound the errors terms by:

∥ri∥Lp ≤ Ce−(δ−ϵ)T ∥f∥Lp (3.42)

for some uniform constant. Let us define:

u = ζ0u0 + χT +1(ρ1)(u1 + h1) + χT +1(ρ2)(u2 + h2).
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Then f − PTu = χT +1(ρ1)w1 + χT +2(ρ2)w2 + r1 + r2 satisfies ∥f − PTu∥Lp ≤
Ce−(δ−ϵ)T ∥f∥Lp , and ∥u∥W l,p ≤ CT∥f∥Lp , for some constant C. By Lemma 3.32,
we can decompose u = u′ +w where w ∈ KT and u′ is orthogonal to the substitute
kernel. Moreover we have bounds:

∥u′∥W k,p ≤ (1 + C ′
1)∥u∥W k,p ≤ C ′T∥f∥Lp , ∥w∥W k,p ≤ C1∥u∥W k,p ≤ C ′′T∥f∥Lp

and u′ satisfies
f − PTu

′ = f − PTu+ PTw (3.43)

and as w ∈ KT , then ∥PTw∥Lp ≤ Ce−δT ∥w∥W k,p ≤ Ce−(δ−ϵ)T ∥f∥Lp .

Now we have all the tools to prove Theorem 3.6, in the case where λ0 is a root
of order 1. Let f ∈ Lp(FT ) be an arbitrary section. By Lemma 3.32, there exist
f̃ ∈ Lp(FT ) and w0 ∈ K ∗

T such that f = f̃ + w0, f̃ is orthogonal to K ∗
T and:

∥f̃∥Lp ≤ (1 + C1)∥f∥Lp , ∥w0∥Lp ≤ C1∥f∥Lp .

Moreover, by Proposition 3.33 there exist u0 ∈ W k,p(ET ) orthogonal to K ∗
T and

f1 ∈ Lp(FT ) such that:
f̃ = PTu0 + f1

with bounds:
∥u0∥W k,p ≤ C3T∥f̃∥Lp ≤ (1 + C1)C3T∥f∥Lp

and
∥f1∥Lp ≤ C2e

−δT ∥f̃∥Lp ≤ (1 + C1)C2e
−δT ∥f∥Lp .

Choose T large enough such that η = (1 + C1)C2e
−δT < 1, and define f0 = f .

Inductively, we can construct sequences {fn, n ≥ 0} in Lp(FT ), {un, n ≥ 0} in the
L2-orthogonal complement of KT in W k,p(ET ) and {wn, n ≥ 0} in K ∗

T such that
for all n ≥ 0 we have:

fn − fn+1 = PTun + wn (3.44)

with the bounds:

∥fn∥Lp ≤ ηn∥f∥, ∥un∥W k,p ≤ ηn(1 + C1)C3T∥f∥Lp , and ∥wn∥Lp ≤ ηnC1∥f∥Lp .

(3.45)
As W k,p(ET ) is complete and η < 1, the series ∑un converges. Let u = ∑∞

n=0 un.
As each term of the series is orthogonal to KT , u belongs to the orthogonal space
to KT in W k,p(ET ). In the same way, the series ∑wn converges to an element
w ∈ K ∗

T . It follows from the bounds (3.45) that we have:

∥u∥W k,p ≤ (1 + C1)C2

1 − η
T∥f∥Lp , ∥w∥Lp ≤ C1

1 − η
∥f∥Lp
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Further the map W k,p(ET ) → Lp(FT ) is continuous, and therefore we can sum
over n in equality (3.44) to obtain f = PTu+ w.

This proves the existence part in Theorem 3.6 for f in the Lp range. For the
uniqueness, remark that the index of PT satisfies the inequality:

ind(PT ) ≥ dim KT − dim K ∗
T . (3.46)

As the map W k,p(ET ) → Lp(FT ) induced by PT is Fredholm, the uniqueness of
u ∈ W k,p(ET ) orthogonal to KT and w ∈ K ∗

T satisfying f = PTu+w is equivalent
to proving that inequality (3.46) is in fact an equality. But the same reasoning
applied to P ∗

T yields:
ind(P ∗

T ) ≥ dim K ∗
T − dim KT .

Since ind(P ∗
T ) = − ind(PT ), uniqueness in Theorem 3.6 follows.

To complete the proof of the theorem in the Sobolev range, it remains to remark
that if one further assumes that f ∈ W l,p(FT ), Proposition 3.4 implies that

∥u∥W k+l,p ≤ C(∥f∥W l,p + ∥u∥Lp) ≤ C∥f∥W l,p + C ′T∥f∥Lp

for some constant C ′ > 0.

Remark 3.35. One of the advantages of treating the case of a root of order 1 first is
that we proved that the Sobolev constant does not grow more than linearly with
T , whereas in the general case it is more complicated to find the optimal rate of
growth of the constant. This will be useful in our applications in Section 3.4 to
derive the rate of decay of the low eigenvalues of the Laplacian.

Let us go back to the general case, before indicating how to modify our con-
struction to treat the case of a single root of any order. We first prove our previous
claim, that without any restrictions on the number of real roots of P0 the charac-
teristic system admits a solution if and only if f is orthogonal to the substitute
cokernel:

Lemma 3.36. For any T ≥ 1 and any f ∈ Lp(FT ) orthogonal to K ∗
T , the char-

acteristic system (3.39) admits a solution v ∈ E .

Proof. Let us use the following notations for u1 ∈ K1 and g1 ∈ K ∗
1 :

κ1,T [u1](t, x) = κ1[u1](t+ T + 1, x), κ∗
1,T [u1](t, x) = κ∗

1[u1](t+ T + 1, x)

and for u2 ∈ K2 and g2 ∈ K ∗
2 :

κ2,T [u2](t, x) = κ2[u2](t− T − 1, x), κ∗
2,T [u2](t, x) = κ∗

2[u2](t− T − 1, x).
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As the pairing (·, ·) is invariant by translation, it is still true that im κi,T is the
orthogonal space to im κ∗

i . Thus we may proceed exactly as above, choosing a
complement E ′

T of im κ1,T ∩ im κ2,T in E , and complements E ∗
i,T of im κ∗

1,T ∩ im κ∗
2,T

in κ∗
i,T . Once these arbitrary choices are made we can decompose:

E ′
T = E0,T ⊕ E1,T ⊕ E2,T

where Ei,T = im κi,T ∩ E ′
T and E0,T is the orthogonal space of E1,T ⊕ E2,T in E ′

T .
Hence the non-degenerate pairing E ′

T × (im κ1,T + im κ2,T ) → C induced by (·, ·)
decomposes as the orthogonal sum of the non-degenerate pairings:

E0,T × (im κ1,T ∩ im κ2,T ) → C, E1,T × E ∗
2,T → C and E2,T × E ∗

1,T → C.

As in the proof of Proposition 3.33, for i = 1, 2 the orthogonal space K ∗
i,+ of

Ki,0 in Ki is isomorphic to im κ∗
i,T , so that the decomposition im κ∗

i,T = im κ∗
1,T ∩

im κ∗
2,T ⊕ E ∗

i,T induces a corresponding decomposition K ∗
i,+ = K ∗

i,T,m ⊕ K ∗
i,T,⊥.

Thus if f ∈ Lp(MT ) is orthogonal to the substitute cokernel K ∗
T the characteristic

system can be written as:
(v0, κ

∗
1,T [g0]) = ⟨f, (1 − χT +1(ρ1))g0⟩ − ⟨(1 − χ)f0, κ

∗
1[g0]⟩0, ∀g0 ∈ K ∗

1,T,m

(v1, κ
∗
1,T [g1]) = ⟨f, (1 − χT +1(ρ1))g1⟩ − ⟨(1 − χ)f0, κ

∗
1[g1]⟩0, ∀g1 ∈ K ∗

1,T,⊥

(v2, κ
∗
2,T [g2]) = −⟨f, (1 − χT +1(ρ2))g2⟩ + ⟨(1 − χ)f0, κ

∗
2[g2]⟩0, ∀g2 ∈ K ∗

2,T,⊥

where v = v0 +v1 +v2 ∈ E0,T ⊕E1,T ⊕E2,T . Given the non-degeneracy of the above
pairings this system is manifestly invertible.

Despite the fact that we can solve the characteristic system whenever f is
orthogonal to the substitute cokernel K ∗

T , this does not imply that we can find a
solution v ∈ E with bounds of the form ∥v∥ ≤ C(T )∥f∥Lp with a good control on
C(T ), which was a key argument in the previous construction. This is due to the
fact that the characteristic system is in general underdetermined, and only becomes
determined after a choice of arbitrary complements E ′

T of im κ1,T ∩ im κ2,T in E

and E ∗
i,T of im κ∗

1,T ∩ im κ∗
2,T in im κ∗

i,T , using the notations introduced in the above
proof. In the case where P0 has a single root of order 1, this was not problematic
as we could simply make any arbitrary choice independently of T , but in general
we cannot make such a consistent choice. This is especially true at values of T
where the rank of the characteristic system drops.

As we discussed in §3.1.2, if P0 has only one real root, then in a good basis the
coefficients of the characteristic system are polynomial in T . Therefore, the rank of
the system is constant whenever T is large enough and we can fix a complement of
its kernel independent of T . On this complement, the system can be inverted with
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polynomial control on the norm. Thus if f ∈ Lp(FT ) is orthogonal to the substitute
cokernel we can find solutions of the characteristic system with ∥v∥ ≤ CT β∥f∥Lp

for some exponent β > 0. In the same way, all the matching conditions can
be expressed as linear equations with coefficients depending polynomially on T .
Therefore, the norm of the L2-orthogonal projections onto KT and K ∗

T do not
grow more than polynomially. Then we can use the same argument as above to
prove Theorem 3.6 in the general case.

In fact, any assumptions ensuring that we can invert the characteristic system
with less than exponential growth on the norm after fixing complements of its
image and kernel, and that the norm of the projections onto KT and K ∗

T do not
grow too quickly, would yield the same result.

3.4 Spectral aspects

In this section, we want to interpret our results from a spectral perspective. In-
deed, for self-adjoint operators the approximate kernel can be regarded as a finite-
dimensional space associated with very low eigenvalues of the operator PT . For
the Laplacian, we shall see in §3.4.1 that the substitute kernel is a good approx-
imation of the space of harmonic forms. Orthogonally to the space of harmonic
forms, the results of the previous section imply a bound in O(T 2) on the L2-norm
of the inverse of ∆T . In particular if 0 is a root of the Laplacian acting on q-forms
on R × X, then the lowest non-zero eigenvalues of ∆T acting on q-forms admit a
lower bound of the form C

T 2 . In §3.4.2 we study the density of eigenvalues with
fastest decay rate and prove Theorem 3.8.

3.4.1 Approximate harmonic forms. We begin with a review of standard
properties of the Laplacian on EAC manifolds (see for instance [93, 6.4]). Let
(Z, g) be an oriented EAC Riemannian manifold of rate µ > 0, let Y = R ×X be
its asymptotic cylinder and ρ be a cylindrical coordinate function. The space H q

of bounded closed and co-closed q-forms is equal to the space of bounded harmonic
q-forms. Moreover, there is a direct sum decomposition:

H q = H q
0 ⊕ H q

d ⊕ H q
d∗

where H q
0 is the space of decaying harmonic q-forms, H q

d is the space of bounded
exact harmonic q-forms and H q

d∗ the space of bounded co-exact harmonic q-
forms. On the other hand, the map κq mapping a bounded harmonic q-form
to its translation-invariant expansion at infinity induces two maps

αq : H q → Hq(X), βq : H q → Hq−1(X)
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such that κq(η) = α0 + dt ∧ β0 where α0 and β0 are the harmonic representatives
of αq(η) and βq(η) respectively. The map αq can be factorised as H q → Hq(Z) →
Hq(X), where any q-form in H q is mapped to its de Rham cohomology class in
Hq(Z) and the map Hq(Z) → Hq(X) comes from the long exact sequence of the
pair (Z,X). By [9, Proposition 4.9], H q

0 is mapped isomorphically to the image
of the map Hq

c (Z) → Hq(Z) coming from the same exact sequence. In particular
this implies that H q

0 ⊕ H q
d ⊂ kerαq, and by considering Hodge duals it follows

that H q
0 ⊕ H q

d∗ ⊂ ker βq. As the kernel of the map κq is H q
0 this implies that

kerαq = H q
0 ⊕ H q

d , ker βq = H q
0 ⊕ H q

d∗ .

By [93, Proposition 6.18], the map H q
0 ⊕ H q

d∗ → Hq(Z) is an isomorphism, and
αq maps H q

d∗ isomorphically onto the image of the map Hq(Z) → Hq(X) coming
from the long exact sequence of (Z,X).

Let 0 ≤ q ≤ dimZ and denote by σq the minimum of µ and of the square roots
of the lowest eigenvalues of the Laplacian acting on (q − 1)- and q-forms on X.
Any bounded closed and co-closed q-form η on Z is asymptotic to a translation-
invariant form η0 = α0 + dt ∧ β0, up to terms in O(e−δρ) for any δ < σq. With
the above notations (α0, β0) are the harmonic representatives of (αq(η), βq(η)). It
is a standard fact that there exists a (q − 1)-from ξ on Z such that η − η0 = dξ in
the domain {ρ > 1}, with |∇lξ| = O(e−δρ) for any l ≥ 0 and δ < σq. A suitable
ξ can be constructed as follows. Identify the region {ρ > 1} with the cylinder
(1,∞) ×X, and write η−η0 = α(t) +dt∧β(t) where α, β and all their derivatives
have the usual exponential decay. As η and η0 are closed this implies:

dXα(t) = 0 = ∂tα(t) − dXβ(t)

for all t > 1, where dX denotes the exterior differential on X. Hence we can define
ξ in the domain {ρ > 1} by

ξ(t, x) =
∫ t

+∞
β(τ, x)dτ, ∀(t, x) ∈ (1,∞) ×X.

This (q − 1)-form ξ allows us to build a 1-parameter family of closed q-forms

ηT = η − d(χT (ρ)ξ)

interpolating between η when ρ < T− 1
2 and η0 when ρ > T+ 1

2 , which all represent
the cohomology class of η in Hq(Z). Moreover, the difference ηT − η and all its
derivatives satisfy uniform bounds in O(e−δT ) for any 0 < δ < σq.

Let (Z1, g1) and (Z2, g2) be two matching EAC manifolds, and consider the
1-parameter family of compact Riemannian manifolds (MT , gT ) obtained by the
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gluing procedure explained in §3.1.1. We want to control the mapping properties
of the associated operators d + d∗

T and ∆T as T → ∞. Strictly speaking, these
operators differ from the operators obtained by gluing d+ d∗

1 with d+ d∗
2 and ∆1

with ∆2 in the gluing region {|ρT | ≤ 3
2}. Nevertheless, the results of the previous

parts still apply as the coefficients of the difference and and all their derivatives
have exponential decay with T . It is convenient to slightly modify our definition
of approximate kernel. If (η1, η2) is a matching pair of harmonic forms, define a
closed form on MT by:

ηT =


η1,T if ρT ≤ −1

2
η2,T if ρT ≥ 1

2
η0 if |ρT | ≤ 1

2

where both η1 and η2 are asymptotic to η0 and η1,T and η2,T are closed forms
constructed as above. It follows that ηT is closed. We denote by H q

T the finite-
dimensional space of q-forms constructed as above from a pair of matching q-forms.
Again, this differs from our previous definition of substitute kernel only up to terms
that are bounded in O(e−δT ) as well as all their derivatives for any δ < σq. Hence
our results, and in particular Theorem 3.6, still apply. As the elements of H q

T are
closed there is a well-defined map:

H q
T → Hq(MT )

sending every element to its de Rham cohomology class. The key point is the
following theorem [96, Theorem 3.1]:

Theorem 3.37. For T large enough, the map H q
T → Hq(MT ) is an isomorphism.

Let us briefly sketch the proof of this theorem. It relies on a close examination
of the Mayer-Vietoris sequence:

. . . → Hq−1(Z1) ⊕Hq−1(Z2) → Hq−1(X) → Hq(MT ) → Hq(Z1) ⊕Hq(Z2) → . . .

As the space of approximate harmonic q-forms H q
T is isomorphic to the space

Hq
c (Z1) ⊕Hq

c (Z2) ⊕ imα1,q ∩ imα2,q ⊕ im β1,q ∩ im β2,q

and since ker βi,q ≃ Hq(Zi), it is clear that the restriction of H q
T → Hq(MT ) to

the space obtained by matching pairs in H q
i,0 ⊕ H q

i,d∗ yields an isomorphism:

Hq
c (Z1) ⊕Hq

c (Z2) ⊕ imα1,q ∩ imα2,q ≃ im(Hq(MT ) → Hq(Z1) ⊕Hq(Z2)).

Moreover, the subspace of H q
T obtained by gluing matching pairs of bounded exact

harmonic q-forms, which is isomorphic to im β1,q ∩ im β2,q, maps into the image of

91



Hq−1(X) → Hq(MT ). By Lemma 3.25, im β1,q ∩ im β2,q is the orthogonal space of
imα1,q−1 ⊕ imα2,q−1 for the inner product induced by the L2-product on harmonic
representatives, and therefore im β1,q ∩im β2,q has the same dimension as the kernel
of Hq(MT ) → Hq(Z1) ⊕Hq(Z2). Thus it only remains to prove that the subspace
of H q

T obtained by gluing matching pairs of exact q-forms maps isomorphically
onto the kernel of the map Hq(MT ) → Hq(Z1) ⊕ Hq(Z2) coming from the exact
sequence. In [94, Theorem 3.1] it is proven that this is the case for T large enough.

Alternatively, one could also argue using Theorem 3.6. The spaces H q
T and

Hq(MT ) have same dimension by the above argument. Moreover, the Laplacian
∆T maps the orthogonal space of H q

T in W 2,2(ΛqT ∗MT ) isomorphically onto a
complement of H q

T in L2(ΛqT ∗MT ), for T large enough. Hence the map H q
T →

Hq(MT ) must be an isomorphism for large T , since otherwise there would be a non-
trivial exact form in H q

T and the image of the Laplacian would have codimension
strictly less than bq(MT ) in L2(ΛqT ∗MT ).

As a consequence, the L2-projection of the space H q
T of approximate harmonic

q-forms onto the space H q(MT ) of genuine harmonic q-forms is an isomorphism for
T large enough. It is natural to ask how close to their harmonic part the elements
of H q

T are. If η ∈ H q
T is decomposed in harmonic and exact parts η = ξ + dν,

then:
∥∆Tdν∥L2 = ∥∆T (η − ξ)∥L2 = ∥∆Tη∥L2 = O

(
e−δT ∥η∥L2

)
for any δ < σq. By Theorem 3.6, there exists a (q− 1)-form η′ with ∆Tη

′ = ∆Tdν

and satisfying a bound of the form

∥η′∥W 2,2 ≤ CT β∥∆Tdν∥L2 ≤ C ′e−δT ∥η∥L2

for some constant C ′. As η′ − dν is harmonic it follows that ∥dν∥L2 ≤ ∥η′∥L2 ,
which yields:

∥η − ξ∥L2 = O
(
e−δT ∥η∥L2

)
for any δ < σq. Thus not only is the L2-projection of H q

T onto H q(MT ) an
isomorphism, but the norm of the projection is close to 1, up to O(e−δT ) terms.
Once this inequality is established in L2, the a priori estimates of Proposition 3.4
imply that

∥η − ξ∥W l,2 = O
(
e−δT ∥η∥L2

)
for any l ≥ 0. Then, the Sobolev embedding theorem (see Proposition 3.5) yields
estimates:

∥η − ξ∥W l,p = O
(
e−δT ∥η∥Lp

)
, ∥η − ξ∥Cl = O

(
e−δT ∥η∥C0

)

92



for any l ≥ 0, p > 1 and 0 < δ < σq.
By the same bootstrapping argument, we can prove that if ν ∈ W l,p(ΛqT ∗MT )

is orthogonal to H q
T and ν ′ is the unique q-form orthogonal to H q(MT ) such that

∆Tν = ∆Tν
′ (or equivalently (d+ d∗

T )ν = (d+ d∗
T )ν ′) then

∥ν − ν ′∥W l,p = O(e−δT ∥ν∥W l,p).

These remarks, the fact that the Laplacian ∆T is the square of the operator d+d∗
T

whose only root has order 1 and Theorem 3.6 imply the following:

Corollary 3.38. Let p > 1 and l ∈ N, and assume that 0 is an indicial root of the
Laplacian action on q-forms on Y , that is bq−1(X) + bq(X) > 0. Then there exist
constants C,C ′ > 0 such that, for large enough T and any η ∈ W l,p(ΛqT ∗MT )
orthogonal to H q(MT ), the unique solution η′ ∈ W 2+l,p(ΛqT ∗MT ) of ∆η′ = η

orthogonal to H q(MT ) satisfies:

∥η′∥W l+2,p ≤ C∥η∥W l,p + C ′T 2∥η∥Lp .

Remark 3.39. If instead we assume that bq−1(X) + bq(X) = 0, the results of [81]
imply uniform bounds (independent of T ) for the Green’s function of the Laplacian
(see Remark 3.7).

Proof. Let us consider the operator d+ d∗
T acting on Λ•T ∗MT . Since the only real

root of d+ d∗
T is 0 and this is a root of order 1, we saw in §3.3.3 that in this case

Theorem 3.6 holds with β = 1. Moreover, for T large enough the L2-projection
of HT on the space of harmonic forms H is an isomorphism, and therefore HT

is a linear complement of the image of d + d∗
T in W l,p. Thus by Theorem 3.6 any

differential form η of regularity W l,p which is orthogonal to the space of harmonic
forms can be written as

η = (d+ d∗
T )ν

for a unique differential form ν of regularity W l+1,p orthogonal to the space of
approximate harmonic forms HT , which satisfies bounds of the form

∥ν∥W l+1,p ≤ C(∥η∥W l,p + T∥η∥Lp), ∥ν∥Lp ≤ ∥ν∥W 1,p ≤ C ′T∥η∥Lp

where in the second equality we use the case l = 0 of the theorem. By the
previous remarks, the unique differential form ν ′ orthogonal to H (MT ) satisfying
(d+ d∗

T )ν ′ = η satisfies bounds of the form ∥ν − ν ′∥W k,p ≤ Cke
−δT ∥ν∥W k,p for any

k ≥ 0 and small enough δ > 0, and thus for large enough T we also have

∥ν ′∥W l+1,p ≤ C(∥η∥W l,p + T∥η∥Lp), ∥ν ′∥Lp ≤ ∥ν ′∥W 1,p ≤ C ′T∥η∥Lp
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for some constants C,C ′, possibly different from the previous ones but independent
of T . Iterating this argument, the unique differential form η′ orthogonal to H (MT )
such that (d+ d∗

T )η′ = ν ′, which is a solution of ∆Tη
′ = η, satisfies the bounds

∥η′∥W l+2,p ≤ C(∥ν ′∥W l+1,p + T∥ν ′∥Lp) ≤ C ′∥η∥W l,p + C ′′T 2∥η∥Lp

for some constants C,C ′, C ′′ which do not depend on η and T large enough.

Consequently, if bq−1(X) + bq(X) > 0 the lowest eigenvalue of ∆T acting on
q-forms satisfies a bound of the form λ1(T ) ≥ C

T 2 as T → ∞. In the next part we
study the distribution of the eigenvalues that have the fastest decay rate, that is
of order T−2.

3.4.2 Density of low eigenvalues. We want bounds on the densities Λq,inf(s),
Λq,sup(s) of low eigenvalues of the Laplacian ∆T acting on q-forms defined in §3.1.3.
When bq−1(X) + bq(X) = 0, the Laplacian acting on q-forms does not admit any
real root, and thus it has no decaying eigenvalues. From now on we assume that
bq−1(X) + bq(X) > 0. We shall prove Theorem 3.8 using a min-max principle.

The easiest part, which does not require the results of Section 3.3, is to find
a lower bound for Λq,inf(s). Let us denote by 0 < λ1(T ) ≤ . . . ≤ λn(T ) ≤ . . .

the non-decreasing sequence of positive eigenvalues of the Laplacian, counted with
multiplicity. The n-th eigenvalue (counted with multiplicity) is determined by:

λn(T ) = min
{

max
{

∥∆Tη∥L2

∥η∥L2
, η ∈ V \{0}

}
, V ⊂ W 2,2(ΛqT ∗MT ), dim V = n

}

where V ranges over spaces orthogonal to harmonic forms. Using this we claim:

Lemma 3.40. Let V ⊂ C2([−1, 1],C) be an n-dimensional space of functions such
that f(−1) = f(1) = f ′(−1) = f ′(1) = 0 for all f ∈ V . Let A > 0 such that for
all non-zero f ∈ V we have:∫ 1

−1
|f ′′(t)|2dt < A2

∫ 1

−1
|f(t)|2dt.

Then for T large enough λ(bq−1(X)+bq(X))n−bq(MT )(T ) ≤ A
T 2 .

Proof. Any f ∈ V can be extended as a C1 function to R by setting f(t) = 0 for
any |t| ≥ 1. With this extension, f ∈ W 2,2(R) and f ′′ ∈ L2(R) vanishes outside
of [−1, 1] and is equal to the usual second derivative inside this interval. Let us
choose 0 < τ < 1 small enough so that:∫ 1

−1
|f ′′(t)|2dt < A2(1 − τ)4

∫ 1

−1
|f(t)|2dt (3.47)
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for any f ∈ V . For T ≥ 1, let VT be the subspace of W 2,2(ΛqT ∗
CY ) spanned by

sections of the form:
η(t, x) = f

(
t

(1 − τ)T

)
ν(x)

where f ∈ V and ν is a translation-invariant harmonic form on Y . In particular, it
has dimension dim VT = (bq−1(X) + bq(X))n over C. As the elements of VT vanish
outside of the finite cylinder [−(t− τ)T, (1 − τ)T ] ×X, it can be identified with a
subspace of W 2,2(ΛqT ∗

CMT ). On the support of the elements of VT , the Laplacian
∆T and the metric gT approach ∆0 = ∆X − ∂2

t and g0 = gX + dt2 up to terms
in O(e−δτT ) and similarly for all derivatives, for some δ > 0 appropriately small.
Therefore, there exist constants C,C ′ > 0 such that:

sup
η∈VT \{0}

∥∆Tη∥L2

∥η∥L2
≤ (1 + Ce−δτT )

(1 − τ)2T 2 sup
f∈V \{0}

∥f ′′∥L2

∥f∥L2
+ C ′e−δτT sup

η∈VT \{0}

∥η∥W 2,2

∥η∥L2
.

As the ratio between the W 2,2-norm and the L2-norm on VT does not grow more
than polynomially with T , the second term in the right-hand-side has exponential
decay. On the other hand, by (3.47) the first term is less than (A−ϵ)

T 2 for large
enough T and small enough ϵ > 0. This proves the lemma.

We can apply the above lemma to the spaces:

Vn =
 ∑

1≤|k|≤n

ake
ikπt,

∑
1≤|k|≤n

(−1)kak =
∑

1≤|k|≤n

(−1)kkak = 0
 (3.48)

For n ≥ 2, the space Vn has dimension 2n − 2 and for any non-zero f ∈ Vn we
have: ∫ 1

−1
|f ′′(t)|2dt < (nπ)2

∫ 1

−1
|f(t)|2dt

The above lemma yields the inequality:

Λq,inf(s) ≥ (2⌊
√
s⌋ − 2)(bq−1(X) + bq(X)) − bq(MT ), ∀s ≥ 1. (3.49)

We now want an upper bound on Λq,sup(s). Let us denote by

GT : L2(ΛqT ∗MT ) ∩ H q(MT )⊥ → L2(ΛqT ∗MT ) ∩ H q(MT )⊥

the composition of the inverse of the Laplacian acting onW 2,2(ΛqT ∗MT )∩H q(MT )⊥

with the compact embedding W 2,2 ↪→ L2. The eigenvalues λn+1(T ) can be char-
acterised by:

λ−1
n+1(T ) = min

{
max

{
∥GTη∥L2

∥η∥L2
, η ∈ V \{0}

}
, V ⊂ L2(ΛqT ∗MT ), codim V = n

}
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where moreover V ranges over closed subspaces orthogonal to H q(MT ). Since we
developed an explicit construction of solutions to the equation ∆Tν = η, the idea
is to show that if we impose enough orthogonality conditions to η ∈ L2(ΛqT ∗MT ),
and not only orthogonality to the space of harmonic forms (or to the substitute
kernel), we can give explicit bounds for the norm of GTη.

Let us denote by N the sum of the dimensions of the spaces of harmonic
forms with at most polynomial growth on Z1 and Z2. Moreover, denote by E ⊂
L2([−1, 1],C) the closed subspace of functions f(t) = ∑

ake
ikπt which satisfy:

a0 = 0,
∑

|k|≥1
(−1)k ak

k
=
∑

|k|≥1
(−1)k ak

k2 = 0.

Thus E is the intersection of the kernels of 3 independent continuous linear forms
on L2([−1, 1],C), and therefore has codimension 3. For f ∈ L2(R,C) with compact
essential support let us define:

Hf(t) =
∫ t

−∞
(τ − t)f(τ)dτ.

The first two conditions in the definition of E imply that for any f ∈ E on has:∫ 1

−1
f(τ)dτ =

∫ 1

−1
τf(τ)dτ = 0. (3.50)

On the other hand, the last condition is a matter of scaling under change of
variables. Since we have∫ t

−T
(τ − t)e ikπτ

T dt = T 2

(kπ)2 e
ikπt

T + (−1)k

(
T (T + t)
ikπ

− T 2

(kπ)2

)

if follows that for any f(t) = ∑
ake

ikπt ∈ E, the function fT (t) = f
(

t
T

)
satisfies:

HfT (t) = T 2

π2

∑
|k|≥1

ak

k2 e
ikπt

T (3.51)

for any −T ≤ t ≤ T .
Bearing this in mind, we shall find an upper bound on Λq,sup(s) with the help

of the following technical lemma:

Lemma 3.41. Let V ⊂ E be a closed subspace of codimension n, and let B, ϵ > 0
such that for all f ∈ V we have:∫ 1

−1
|Hf(t)|2dt ≤ 1

(B + ϵ)2

∫ 1

−1
|f(t)|2dt.

Then for T large enough λ(bq−1(X)+bq(X))(n+3)+N(T ) ≥ B
T 2 .
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Proof. The idea is to follow the construction of §3.3.3 to build a solution of ∆Tν =
η, where η is a complex q-form orthogonal to the space of harmonic forms, and
showing that if we assume sufficiently many orthogonality conditions we can give
a precise bound on the constant C such that ∥ν∥L2 ≤ CT 2∥η∥L2 . To do this we
need to introduce a parameter τ > 0 and replace the cutoffs ζ0 and ζ1 (see §3.3.2)
by ζτ and ζτ+1.

Let us define ητ = ζτ+1η, considered as a q-form on the cylinder Y = R × X

supported in the cylinder [−T + τ, T − τ ] × X. We pick a basis η1, . . . , ηm of
the space of translation-invariant harmonic q-forms on Y , orthonormal for the
L2-product on X. Then we may write:

ητ (t, x) = η̃τ (t, x) +
m∑

j=1
fτ,j(t)ηj(x)

with η̃τ orthogonal to any function of the form f(t)ηj(x) with f compactly sup-
ported smooth function, and fτ,j ∈ L2([−T + τ, T − τ ],C). Moreover the solution
ντ = Qητ of ∆0ν = ητ provided by Theorem 3.10 can be written as (see Ex. 3.23):

ντ = Qr[ητ ] +
m∑

j=1
Hfj,τ · ηj.

with Qr defined as in §3.2.3. Let us assume that each of the functions

t ∈ [−1, 1] 7→ fj,τ ((T − τ)t)

belongs to V ⊂ E. This imposes (bq−1(X)+bq(X))(n+3) orthogonality conditions
on η. Given (3.50), the L2-functions Hfj,τ vanish outside of [−T + τ, T − τ ], and
therefore ντ ∈ L2(ΛqT ∗

CY ) and from (3.51) it satisfies:

∥ντ ∥L2 ≤ C∥ητ ∥L2 + (T − τ)2

B + ϵ
∥ητ ∥L2 ≤ T 2

B + ϵ
∥ητ ∥L2 (3.52)

for large enough T . Let us consider ζτντ as a section of ΛqT ∗
CMT supported in the

neck region. As such, there exists a constant C > 0 independent of τ such that:

∥ζτντ ∥L2 ≤ 1 + Ce−δτ

B + ϵ
T 2∥η∥L2

Following the method of §3.3.2, we can write:

η − ∆T (ζτντ) = η1 + η2

with ηi ∈ L2
δ′(ΛqT ∗

CZi), for some small δ′ > 0 that we fix. Moreover, we can argue
as in the proof of Lemma 3.27 to show the bounds:

∥ηi∥L2
δ′

≤ Ceδ′τ ∥η∥L2 + C ′T 2e−δτ ∥η∥L2 ≤ C ′′T 2e−δτ ∥η∥L2 (3.53)
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for T large enough, where δ, δ′ and τ are fixed, and C ′′ does not depend on any of
these choices. Up to O(e−δT ) terms, the vanishing of the obstructions to solving
fi = ∆iνi with νi ∈ W 2,2

δ′ can be expressed as the vanishing of N linear forms (this
is to say that the coefficients of the characteristic system are linear in η ∈ L2).
Thus imposing N additional orthogonality conditions on η, we can use the same
argument as in Proposition 3.33 to show that there exists ν ′ ∈ W 2,2, η′ ∈ L2 such
that η − ∆Tν

′ = η′ with ∥η′∥L2 ≤ CT 2e−δ′T ∥η∥L2 for some constant C ′ possibly
depending on δ′ but not on τ or T . From (3.52) and (3.53) we can deduce:

∥ν ′∥L2 ≤
(

1 + Ce−δτ

B + ϵ
+ C ′e−δτ

)
T 2∥η∥L2

for large enough T . On the other hand, as η is by assumption orthogonal to the
space of harmonic forms, so is η′ and by Corollary 3.38 there exists ν ′′ such that
∆Tν

′′ = η′ with a bound:

∥ν ′′∥L2 ≤ CT 2∥η′∥L2 ≤ C ′′T 4e−δ′T ∥η∥L2

for some constant C ′′ which does not depend on τ or on T large enough. Thus if
ν = ν ′ + ν ′′ we have ∆Tν = η with a universal bound:

∥ν∥L2 ≤
(

1 + Ce−δτ

B + ϵ
+ C ′e−δτ + C ′′T 2e−δ′T

)
T 2

for some constants C,C ′, C ′′ that may depend on the choices of δ, δ′ but not on τ

and T . As ∥GTη∥L2 ≤ ∥ν∥L2 it follows that if τ and T are large enough then

∥GTη∥L2 ≤ T 2

B
∥η∥L2 .

This inequality holds true provided η satisfies all the orthogonality conditions
described above, which define a closed subspace of codimension no more than
(bq−1(X) + bq(X))(n + 3) + N in the orthogonal space to harmonic forms in
L2(ΛqT ∗

CMT ). The lemma follows.

To use this lemma we consider the subspaces V ′
n ⊂ E defined by:

V ′
n =

{
f(t) =

∑
ake

ikπt ∈ E, ak = 0 ∀|k| ≤ n
}
. (3.54)

The space V ′
n has codimension 2n in E, and for any f ∈ V ′

n, (3.51) implies:∫ 1

−1
|Hf(t)|2dt2 ≤ 1

(n+ 1)4π4

∫ 1

−1
|f(t)|2dt

Hence we have an upper bound:

Λq,sup(s) ≤ 2(⌊
√
s⌋ + 3)(bq−1(X) + bq(X)) +N.
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Together with the bound on Λq,inf(s) this proves the first part of Theorem 3.8.
In order to prove the second assertion in Theorem 3.8, let us consider the subset

Wn ⊂ Vn defined by:

Wn =
 ∑

1≤|k|≤n

ake
ikπt ∈ Vn,

∑
1≤|k|≤n

(−1)kk2ak = 0
 (3.55)

seen as a subspace of C3([−1, 1],C). Any f ∈ Wn can be extended as a C2-
function on R, with f ′ ∈ Vn. Moreover if β is a harmonic (q − 1)-form then
d(fβ) = f ′dt ∧ β. Using this, we can deduce that the density of low eigenvalues
of the Laplacian acting on exact q-forms, which we define as the density of low
eigenvalues, satisfies:

Λe
q,inf(s) ≥ 2bq−1(X)

√
s−Nq

for some constant Nq ≥ 0. By Hodge duality, this implies the lower bound:

Λ∗
q,inf(s) ≥ 2bq(X)

√
s−Ndim MT −q.

As we know that Λ∗
q,sup(s) + Λe

q,sup(s) ≤ 2(bq−1(X) + bq(X))
√
s+O(1), this means

that when bq(X) ̸= 0 we have:

Λ∗
q,sup(s) = Λ∗

q,inf(s) +O(1) = 2bq(X)
√
s+O(1).
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Chapter 4

Geometry and incompleteness of
the moduli spaces

In this chapter, we begin our study of the geometry of G2-moduli spaces, which
will be the main theme for the remainder of this dissertation. Throughout this
chapter, we will denote by M a compact 7-manifold admitting torsion-free G2-
structures, by M the moduli space of torsion-free G2-structures on M and by G

the volume-normalised L2-metric on M . Our main interest is the case of manifolds
with full holonomy, which necessarily have finite fundamental group, but we will
only make the weaker assumption b1(M) = 0 unless otherwise stated.

Under this assumption, the metric G has the remarkable property of being
the Hessian of a global potential function F , with respect to the affine structure
induced by the natural map M → H3(M). To the author’s knowledge, this was
first noticed in the physics literature [10, 54, 55, 61] following an observation of
Hitchin [60] that the volume functional has non-degenerate (but indefinite) Hessian
on the moduli spaces.

We shall introduce the potential function F in Section 4.1, where we present
its basic properties and derive a few technical results which will be useful in the
next chapters. The goal of the following two sections will be to prove that G2-
moduli spaces may be incomplete, even in the case of manifolds with full holonomy.
This is based on the article [84] by the author, with some additions and slight im-
provements. In Section 4.2, we give sufficient conditions for a path in the moduli
space to have finite length, and apply it to the generalised Kummer construction
[64, 65]. In Section 4.3, we make further observations on the incompleteness ques-
tion, and tackle the cases of the resolution of isolated conical singularities [72]
and the Joyce–Karigiannis construction [68]. We also briefly discuss the general
resolution of flat G2-orbifolds using R-data from Joyce’s monograph [66, Ch. 11],
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which we would also expect to yield finite-distance degenerate limits. These cases
were not treated in the article [84] and only appear in this thesis.

4.1 The moduli spaces as Riemannian manifolds

The aim of this section is to present the basic properties of the metric G and to
set the notations which will be used in the next three chapters. In §4.1.1, we
introduce the potential function F and make some comments as to why G is the
natural metric to consider on M . In §4.1.2 we introduce the concept of adapted
sections of the moduli space, and explain how to use them in order to compute
the infinitesimal variations of geometric quantities defined on M . For the sake of
completeness, we give a self-contained proof of the existence of adapted sections
in §4.1.3, where we also show that the potential is a real-analytic function.

4.1.1 The metric. In Chapter 1, we gave a brief description (following [66]) of
the manifold structure of M , and noted that for a torsion-free G2-structure φ on
M , the tangent space TφDM can be identified with the space H 3(M,φ) of 3-forms
which are harmonic with respect to the metric gφ. This identification allows us to
define a natural Riemannian metric G on M as follows:

G (η, η′) = 1
Vol(φ)

∫
⟨η, η′⟩φµφ, ∀η, η′ ∈ H 3(M,φ) ≃ TφDM , (4.1)

where Vol(φ) is the volume of (M, gφ) which can be written as

Vol(φ) =
∫
µφ = 1

7

∫
φ ∧ Θ(φ). (4.2)

That is, the metric G is just the volume-normalised L2-metric on M . It is perhaps
worth commenting on the volume normalisation in this definition. If we denote by
M1 ⊂ M the moduli space of torsion-free G2-structures with unit volume, then
the metric G restricts to the usual L2-metric on M1, denoted by G1. Moreover,
there is a diffeomorphism R× M1 → M mapping (t, φD) to etφD . Note that the
tangent space of M1 can be identified with the space of harmonic 3-forms in Ω3

27.
In the following easy lemma we show that (M ,G ) splits a line and is isometric to
R × (M1,G1):

Lemma 4.1. G = 7dt2 + G1.

Proof. The vector field ∂
∂t

= etφ ∈ H 3(M, etφ) is orthogonal to H 3
27(M, etφ) and

we easily see that:
G(t,φ)(∂t, ∂t) =

∫
M etφ ∧ Θ(etφ)

Vol(etφ) = 7
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whence G = 7dt2 + Gt for a family of metrics Gt on M1. It remains to see that Gt

does not depend on t. Under the identification TφDM1 ≃ H 2
27(M,φ), we see that:

Gt(η, η′) =
∫
⟨etη, etη′⟩etφµetφ

Vol(etφ) =
∫
e2te−3· 2t

3 ⟨η, η′⟩φe
7t
3 µφ

e
7t
3

= G1(η, η′)

which proves the lemma.

Because of this lemma, there is no essential difference between studying the
Riemannian properties of (M ,G ) and those of (M1,G1). This would not be the
case without the volume normalisation: the unnormalised L2-metric would instead
be written 7dt2 + e7t/3G1 and the splitting would be lost.

Another motivation for this choice of normalisation is that, when the first Betti
number of M vanishes, the metric G is Hessian. To see this, recall that there is a
local diffeomorphism M → H3(M). By pulling back the natural flat connection
of H3(M), we obtain a flat connection D on M . If (u0, . . . , un) is a basis of
H3(M), where n = b3(M) − 1, we will denote by (x0, . . . , xn) the associated local
coordinates on M and call them affine coordinates. Then the connection D is
just the usual differentiation in these coordinates. Since the volume functional is
invariant under diffeomorphisms, it descends to a function on the moduli space,
and we can define F : M → R by:

F (φD) = −3 log Vol(φ). (4.3)

This defines a smooth (in fact, real analytic as we will show in a moment) function
on the moduli space, which we refer to as the potential. If (x0, . . . xn) are local affine
coordinates, we denote by Fa = ∂F

∂xa , Fab = ∂2F
∂xa∂xb , and so on the derivatives of F .

If φ is a torsion-free G2-structure on M , we will also denote by ηa ∈ H 3(M,φ)
the harmonic representative of the cohomology class ∂

∂xa ∈ H3(M). Then the first
and second derivatives of F admit the following expressions [52, 73]:

Proposition 4.2. Let x = (x0, . . . , xn) be affine coordinates on M and let φ be a
torsion-free G2-structure. Then at φD ∈ M we have:

Fa = − 1
Vol(φ)

∫
ηa ∧ Θ(φ), and Fab = 1

Vol(φ)

∫
⟨ηa, π1⊕27(ηb) − π7(ηb)⟩φµφ.

If b1(M) = 0, the harmonic 3-forms with respect to a torsion-free G2-structure
on M have no Ω3

7-component. In this case, the second derivative of F takes the
simpler form:

Fab = 1
Vol(φ)

∫
⟨ηa, ηb⟩φµφ. (4.4)
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Thus the Hessian Fab is non-degenerate and positive, and in affine coordinates

G = Gabdx
adxb = Fabdx

adxb

where we write dxkdxl as a short-hand for the (unsymmetrised) tensor product
dxk ⊗ dxl ∈ T ∗M ⊗ T ∗M , and we will use similar notations for tensor products
of higher degree. Thus the metric G is the Hessian of the potential F for the flat
connection D. In general, if the first Betti number of M is non-zero, the Hessian of
F is still non-degenerate and defines a metric of signature (b3(M)−b1(M), b1(M))
on M . Even in the case b1(M) = 0, one could take the volume functional Vol
instead of F as a potential, which has non-degenerate Hessian and defines a metric
on M with Lorentzian signature [60, 73]. In the present work we prefer to use
F as a potential, which is the convention usually adopted by physicists. In fact,
both conventions agree when restricted to the moduli space M1 of torsion-free G2-
structures with unit volume, but we prefer to use F since it is more convenient
to work with a Riemannian metric instead of a Lorentzian one. Moreover, since
(M ,G ) is isometric to R × (M1,G1) all geometric invariants of interest can be
computed in M , which has a natural affine structure, and directly restricted to
M1, whereas it would be more difficult to do computations directly in M1 for lack
of natural coordinates.

Remark 4.3. The moduli space M also has a second natural affine structure coming
from the local diffeomorphism M → H4(M), φD → [Θ(φ)]. The metric G is also
Hessian for this affine structure, and in fact the potentials are related by a Legendre
transform [73]. Formally, the properties of these two Hessian structures are entirely
similar, and the results of this and the next chapters could easily be adapted. In
practice however, it is more convenient to consider the affine structure coming
from the cohomology class of the 3-form since it can be explicitly computed, for
in the construction of compact G2-manifolds we always perturb a closed 3-form
within a fixed cohomology class. This will play an important role in Section 4.2.

4.1.2 Adapted sections. For the purpose of computing higher derivatives of the
potential, it will be convenient to adopt the following definition:

Definition 4.4. Let U ⊆ M be an open subset of the moduli space. A local
section of the moduli space defined on U is a smooth map φ : U ×M → Λ3T ∗M ,
such that for any u ∈ U the restriction φu = φ{u}×M

is a torsion-free G2-structure
on M and u = φuD in M . A section φ is said to be adapted at u0 ∈ U if the
tangent map Tu0U → Ω3(M) of the induced map U → Ω3(M) takes values in the
space H 3(M,φu0) of harmonic 3-forms for the metric induced by φu0 .
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In affine coordinates x = (x0, . . . , xn), where n + 1 = b3(M), a local section
φ = (φx)x of the moduli space is adapted at a point u0 with coordinates x0 if and
only if for any 0 ≤ a ≤ n, the 3-form ∂φx

∂xa

∣∣∣
x=x0

is harmonic for the metric induced
by φx0 . In §4.1.3 we will show that there exist adapted sections through any point
of the moduli space. The interest of working with sections that are adapted at a
point is the following lemma, which will simplify many computations:

Lemma 4.5. Let U be an open subset of M , x = (x0, . . . , xn) be affine coordinates
on U and u0 ∈ U with coordinates x0. Let φ = (φx)x be a local section of the
moduli space adapted at u0, and f : U ×M → R be a smooth function. Then:

∂

∂xa

∣∣∣∣∣
x=x0

(
1

Vol(φx)

∫
fxµφx

)
= 1

Vol(φx0)

∫ ∂fx

∂xa

∣∣∣∣∣
x=x0

µφx0
, ∀a = 0, . . . , n.

Proof. After a linear change of coordinates, we may choose a basis η0, . . . , ηn of
H 3(M,φx0) such that η0 ∈ H 3

1 (M,φx0) and ηa ∈ H 3
27(M,φx0) for a = 1, . . . , n

and assume that (x0, . . . , xn) are the associated local coordinates (that is, ∂
∂xa =

[ηa] ∈ H3(M)). In these coordinates we have:

∂

∂xa

∣∣∣∣∣
x=x0

(
1

Vol(φx)

∫
fxµφx

)
= 1

Vol(φx0)

∫ ∂fx

∂xa

∣∣∣∣∣
x=x0

µφx0

+ 1
Vol(φx0)

∫
fx0

∂µφx0

∂xa

∣∣∣∣∣
x=x0

+ ∂

∂xa

(
1

Vol(φx)

)∣∣∣∣∣
x=x0

∫
fx0µφx0

. (4.5)

Since the section is adapted at the point x0, ∂φx

∂x0 is a harmonic section of Ω3
1(M)

and ∂φx

∂xa are harmonic sections of Ω3
27(M) for a = 1, . . . , n at x = x0. Hence, if

a ≥ 1 then ∂µφx

∂xa = 0 at x = x0, which also implies ∂ Vol(φx)
∂xa = 0. Therefore, both

terms in the second line of (4.5) vanish. For the derivative along the coordinate
x0, there exists λ ̸= 0 such that ∂φx

∂x0 = λφx0 at x = x0, and by Lemma 1.6 this
implies:

∂µφx

∂x0 = 7λ
3 µφx ,

∂

∂x0

(
1

Vol(φx)

)
= −7λ

3
1

Vol(φx)
at x = x0. Therefore the lemma also holds for a = 0 since the two terms in the
second line of (4.5) cancel each other.

4.1.3 Regularity results. In this part, we prove our previous claims that there
exist adapted sections through every point of the moduli space M and that the
potential function F is real analytic in local affine coordinates. The main ingre-
dient from PDE theory is that an elliptic solution of class C2 of a nonlinear PDE
of order 2 is smooth [2, Th. 12.1] (see also [13, App. A, Th. 41]). Here a solution
is called elliptic if the linearisation of the PDE at this point is an elliptic linear
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differential operator. In practice, we will use the fact that this condition is open
in the C2-topology.

Let φ be a torsion-free G2-structure on M and let (ξa) be a basis of the space
of harmonic three-forms with respect to gφ, and let xa be the corresponding affine
coordinates centred at φD . Using Theorem 2.12, we seek a family of torsion-free
G2-structures φx = φ+ xaξa + dϖx where the 2-form ϖx satisfies:

∆ϖx + ∗d(Fφ(xaξa + dϖx)) = 0

where Fφ(η) = Θ(φ + η) − Θ(φ) − 4
3 ∗ π1(η) − ∗π7(η) + ∗π27(η). For ϵ > 0 small

enough, we can consider this equation for x in an open ball Bϵ ⊂ Rn+1 and η

contained in an open ball Uϵ of the space of 2-forms of regularity W k+2,p that are
L2-orthogonal to harmonic forms, where we choose for instance p ≥ 7 and k ≥ 1
so that the triple (p, k + 1, k) satisfies conditions (2.3) in the previous chapter.

With these choices we can apply Lemma 2.4, and thus the map induced by Θ on
sections of regularity W k+1,p is analytic at φ. If we write Θ(φ+ η) = ∑Θm(φ)ηm,
then we have

Fφ(η) =
∞∑

m=2
Θm(φ)ηm (4.6)

and therefore if ϵ is small enough the map:

Bϵ ⊕Uϵ → W k,p(Λ2T ∗M) ∩ H 2(M,φ)⊥, (x,ϖ) 7→ ∆ϖ+ ∗dFφ(xaξa + dϖ) (4.7)

is analytic. Moreover, by Corollary 2.11 Fφ satisfies a quadratic bound of the form
∥F (η)∥W k+1,p ≤ O(∥η∥2

W k+1,p) near η = 0. Hence (4.7) maps (0, 0) to 0 and its
derivative at (0, 0) in the direction of ϖ is the Laplacian

∆ : W k+2,p(Λ2T ∗M) ∩ H 2(M,φ)⊥ → W k,p(Λ2T ∗M) ∩ H 2(M,φ)⊥

which is bounded and admits a bounded inverse by elliptic regularity. By the
Implicit Function Theorem for analytic maps between Banach spaces [120], for
δ > 0 small enough there exists an analytic map x ∈ Bδ 7→ ϖx ∈ Uϵ such that
η0 = 0 and for (x,ϖ) near (0, 0) the equation

∆ϖ + ∗dFφ(xaξa + dϖ) = 0 (4.8)

is satisfied if and only if ϖ = ϖx. As p ≥ 7 and k ≥ 1, W k+2,p(Λ2T ∗M) embeds
continuously into C2(Λ2T ∗M), and thus we can see ϖx as a family of 2-forms
of class C2 depending smoothly (even analytically) on x. Moreover, for x small
enough, the linearisation of (4.8) at ϖx is elliptic, since the linearisation at ϖ is
the Laplacian. It follows that ϖx is a smooth 2-form for x close enough 0. Hence
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if δ > 0 is small enough, for all x ∈ Bδ the 3-form φx = φ + xaξa + dϖx is a
smooth torsion-free G2-structure on M , with affine coordinates (xa). Moreover,
the map x ∈ Bδ 7→ φx ∈ W k+1,p(Λ3

+T
∗M) is analytic, and by Lemma 2.4 it

follows that the map x ∈ Bδ 7→ µφx ∈ W k+1,p(Λ7T ∗M) is analytic. As integration
defines a continuous linear form on W k+1,p(Λ7T ∗M), we deduce that the map
x 7→ Vol(φx) =

∫
µφx is analytic. Taking the logarithm we finally obtain:

Theorem 4.6. The potential F is real-analytic in affine coordinates.

From the proof of the analyticity of the potential, we may also deduce our
second claim about the existence of smooth adapted sections through every point
of the moduli space. In order to do this, we want to use again the fact that an
elliptic solution of class C2 of a nonlinear PDE of order 2 is smooth. One problem
is that the sections x 7→ ϖx previously constructed do not satisfy any particular
elliptic equation jointly in the variables x ∈ Bδ and p ∈ M . To solve this issue, we
can take advantage of the analyticity of the equations to replace the real variable x
by a complex variable z and use the fact that complex-analytic maps are harmonic
(this argument is similar to that of [78, §6]).

As in the proof of the analyticity of the potential we let p ≥ 7 and k ≥ 1.
Using the expansion (4.6), we extend F to a function acting on complex 3-forms
by setting:

Fφ(η1 + iη2) =
∞∑

m=2

m∑
l=0

(
m

l

)
im−lΘm(φ)ηl

1η
m−l
2 .

This expression makes sense for complex 3-forms that are small enough in C0-norm,
and it defines an analytic map in a neighbourhood of 0 in W k+1,p(Λ3T ∗M ⊗ C).
As the map which associates to any x ∈ Bδ the unique solution ϖx ∈ Uϵ ⊂
W k+2,p(Λ2T ∗M) of (4.8) is analytic, there exists an expansion ϖx = ∑

α x
αϖα

that converges in W k+2,p-norm. We can therefore extend it to an analytic map
in the complex coordinates za = xa + iya by ϖz = ∑

α z
αϖα, which converges in

W k+2,p(Λ3T ∗M ⊗ C) for z belonging to a small polydisc B′
δ centred at 0 in Cn+1.

For all x ∈ Bδ, ϖx satisfies equation (4.8), and by analyticity we may deduce that
for all z ∈ B′

δ we have:

∆ϖz + ∗dFφ(zaξa + dϖz) = 0.

As p ≥ 7 and k ≥ 1 we have W k+2,p ⊂ C2, and thus the above equations holds
strongly in the C2-sense. Moreover, by composition the map z ∈ B′

δ 7→ ϖz ∈
C2(Λ2T ∗M ⊗ C) is complex-analytic, and since the evaluation map at a point
p ∈ M defines a continuous linear map from C2(Λ2T ∗M ⊗ C) to Λ2T ∗

pM ⊗ C the

106



map z ∈ B′
δ 7→ ϖz(p) ∈ Λ2T ∗

pM ⊗ C is also complex analytic. In particular it is
harmonic, in the sense that it satisfies:

n∑
a=0

∂2ϖz(p)
(∂xa)2 + ∂2ϖz(p)

(∂ya)2 = 0, ∀p ∈ M, ∀z ∈ B′
δ.

Thus, if we consider ϖ as depending jointly on the variables z = (z0, . . . , zn) ∈ B′
δ

and p ∈ M and define the elliptic differential operator

□ = ∆ −
n∑

a=0

∂2

(∂xa)2 + ∂2

(∂ya)2

then ϖ is a C2 solution of the following nonlinear PDE:

□ϖz + ∗dFφ(zaξa + dϖz) = 0. (4.9)

The linearisation at ϖ of the above equation at any point (0, p) ∈ B′
δ × M is the

operator □, and thus if δ is chosen small enough then ϖ is an elliptic solution
of (4.9) on B′

δ × M . Applying again [2, Th.12.1], we deduce that ϖ is smooth
jointly in the variables (z, p). Restricting to real values of z, this proves that
x 7→ φx = φ0 + xaξa + dϖx defines a smooth section of the moduli space through
φ0. The fact that this section is adapted at φ0, i.e. that the derivatives with
respect to x at x = 0 are harmonic 3-forms, follows from the quadratic bound on
Fφ near η = 0.

4.2 Incompleteness of the moduli spaces

In this section, whose results appear in the paper [84] by the author, we prove that
G2-moduli spaces may be incomplete. We begin with some motivation.

4.2.1 Motivation and strategy. One of the most basic questions that one may
ask about the geometry of M 1 is whether it is complete or not. As we mentioned
in the introduction, the analogous question has been extensively studied in the
complex geometry literature in various contexts. A well-understood case is that
of the Kähler cone of a compact Kähler manifold, where the natural metric also
admits a global Hessian potential. The Kähler cone can be described in terms
of the intersection form and the classes of analytic cycles [36], and there is a
simple necessary and sufficient condition for a cohomology class at the boundary
of the cone to be a finite-distance limit [92]. Examples where the Kähler cone is
1Note that there is no essential difference between considering the full moduli space M or the
unit-volume moduli space M1 for the question of completeness since M is isometric to R×M1.
We use M as a matter of convenience in order to take advantage of its affine structure.
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incomplete include Kummer K3 surfaces, where a sequence of hyperkähler metrics
degenerating to T 4/Z2 occurs at finite distance. In the case of moduli spaces of
polarised Calabi–Yau manifolds, the Weil–Petersson metric can be studied using
Hodge-theoretic methods, and there are known examples where the moduli spaces
are incomplete as well as some characterisations of finite-distance degenerations
[117]. See the introduction for a more detailed discussion of these results.

Based on these results, one would expect that it is a general feature of special
holonomy manifolds that certain degenerate limits occur at finite distance, causing
the moduli spaces to be incomplete. Therefore, a more refined question is to derive
geometric conditions to characterise finite-distance limits and to distinguish them
from infinite-distance limits. This question is also very relevant to physics and
the swampland programme which we already discussed at various points: at least
naively, the hope might be that finite-distance limits correspond to the formation
of singularities which are relatively mild, as opposed to infinite-distance limits
where the low-energy effective description of physics would break down.

A difficulty in trying to adapt the known results about the incompleteness of
Kähler cones or Calabi–Yau moduli spaces is that they ultimately rely on tech-
niques of complex algebraic geometry together with the link to Riemannian ge-
ometry provided by Yau’s solution of the Calabi conjecture [123]. By contrast,
G2-manifolds are only amenable to differential-geometric methods and little is
known about the global properties of M . In this section, we shall obtain sufficient
conditions for a degenerate family of G2-manifolds to represent a finite-distance
limit in the moduli space. These conditions have the advantage of being easy to
check for the known constructions of compact G2-manifolds, and we shall deduce
an elementary proof that G2-moduli spaces can indeed be incomplete. However, we
will not attempt to address the question of whether these conditions are optimal
or necessary; in fact, the author tends to think that they are not, but improving
them might require new tools and ideas.

To prove that the moduli space of a certain G2-manifold is incomplete, the
idea is to find a path of torsion-free G2-structures degenerating towards a singular
limit and prove that it has finite length in the moduli space. The natural paths to
consider are those constructed by gluing-perturbation methods, which are typically
indexed by a parameter representing the size of the gluing region. To compute the
length of a such a path, we a priori need to differentiate the family of torsion-free
G2-structures with respect to the gluing parameter to deduce the velocity vector
along the corresponding path in the moduli space and estimate its L2-norm. There
is ongoing work by J. Li [86] using this approach, but there are many analytical
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difficulties related to the fact that the torsion-free G2-structures obtained after
perturbation are only implicitly defined, making this method difficult to implement
in detail.

Here we adopt a much simpler approach, in which the analytical difficulties
disappear. To circumvent the analysis, the idea is to consider not the length but
the energy (the integral of the squared velocity) of a path and make use of the
special properties of the metric G . We derive an expression for the energy of a
curve that involves derivatives only of the cohomology class of the 3-form and no
derivatives of the cohomology class of its dual 4-form. Interpreting this expression
in geometrical terms allows us to give simple sufficient conditions for a path of
torsion-free G2-structures to have finite energy and length, which notably applies
to Joyce’s generalised Kummer construction [64, 65].

4.2.2 Length and energy of paths in the moduli space. LetM be a compact
oriented 7-manifold with b1(M) = 0 admitting torsion-free G2-structures. We aim
to compute the energy of a path in the moduli space M for the metric G . The idea
is to use the fact that the metric G is the Hessian of a global potential. Indeed,
for such metrics we have the following result:

Lemma 4.7. Let P be a manifold equipped with a flat connection D and let g be
a Riemannian metric on P which can be written as the Hessian of a global smooth
potential F : P → R, that is, g = D2F . Then if γ : [0, 1] → P is a path of class
C2 in P we have∫ 1

0
g(γ̇(t), γ̇(t))dt = dγ(1)F (γ̇(1)) − dγ(0)F (γ̇(0)) −

∫ 1

0
dγ(t)F (γ̈(t))dt

where γ̇(t) = ∂γ
∂t

(t) ∈ Tγ(t)P and γ̈(t) = D
dt
γ̇(t) ∈ Tγ(t)P .

Proof. Let us consider the function h(t) = (dF )γ(t)(γ̇(t)). Since F is smooth and
γ is a path of class C2, the function h is C1. Moreover the first derivative of h
satisfies

h′(t) = D2
γ(t)F (γ̇(t), γ̇(t)) + dγ(t)F (γ̈(t)) = g(γ̇(t), γ(t)) + dγ(t)F (γ̈(t)).

The lemma follows by integration by parts.

This lemma allows us to derive a simple energy formula for a path in M .
First, we make a few remarks about notations and the regularity of paths. We
will say that a family of torsion-free G2-structures {φt}t∈(0,T ] on M induces a path
of class Ck in M (k ∈ N ∪ {∞}) if the path {φtD}t∈(0,T ] is of regularity Ck in
M . We emphasize that we do not require the 3-forms φt to be of class Ck jointly

109



in the variable t and in local coordinates on M , since at no point will we need to
consider partial derivatives of φt with respect to the variable t. In practice, if φt is
a continuous family of G2-structures on M and the cohomology class [φt] defines
a path of class Ck in H3(M), then {φt}t∈(0,T ] induces a path of class Ck in M ,
since the moduli space is locally diffeomorphic to H3(M). Although the energy
is defined for a path in M which is merely C1, we will need to consider paths of
class at least C2 so as to differentiate and integrate by parts some expressions.

If {φt}t∈(0,T ] induces a path of class C2 in M , we denote by φ̇t ∈ TφtM the
velocity vector along the induced path in M and by φ̈t = D

dt
φ̇t ∈ TφtM the

covariant derivative of φ̇t along the path for the flat connection D associated with
the local diffeomorphism M → H3(M). In particular [φ̇t] = d[φt]

dt
and [φ̈t] = d2[φt]

dt2 .
From the previous lemma we may deduce:

Proposition 4.8. Let {φt}t∈(0,T ] be a family of torsion-free G2-structures on M ,
inducing a path of class C2 in M . Then for any τ ∈ (0, T ] the energy of the path
{φt}t∈[τ,T ] reads:

ET
τ (φt) =

∫ T

τ
Gφt(φ̇t, φ̇t)dt = 1

Vol(φτ )

〈
d[φt]
dt

∣∣∣∣∣
t=τ

∪ [Θ(φτ )], [M ]
〉

− 1
Vol(φT )

〈
d[φt]
dt

∣∣∣∣∣
t=T

∪ [Θ(φT )], [M ]
〉

+
∫ T

τ

1
Vol(φt)

〈
d2[φt]
dt2

∪ [Θ(φt)], [M ]
〉
dt.

Proof. This follows from the previous lemma and from Proposition 4.2 with implies
that

dFφt(φ̇t) = − 1
Vol(φt)

∫
M
φ̇t ∧ Θ(φt) = − 1

Vol(φt)

〈
d[φt]
dt

∪ [Θ(φt)], [M ]
〉

and similarly

dFφt(φ̈t) = − 1
Vol(φt)

〈
d[φt]
dt

∪ [Θ(φt)], [M ]
〉
.

These expressions together with Lemma 4.7 yield the desired formula.

By the Cauchy–Schwarz inequality, the length LT
0 (φt) =

∫ T
0

√
Gφt(φ̇t, φ̇t)dt and

the energy of the curve {φt}t∈(0,T ] satisfy the inequality LT
0 (φt)2 ≤ TET

0 (φt) and
therefore we immediately deduce:

Corollary 4.9. With the same assumptions as in the previous proposition, assume
that there exist a constant C > 0 and a nonnegative integrable function A : (0, T ] →
R such that for all t ∈ (0, T ] we have∣∣∣∣∣

〈
d[φt]
dt

∪ [Θ(φt)], [M ]
〉∣∣∣∣∣ ≤ C Vol(φt)
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and ∣∣∣∣∣
〈
d2[φt]
dt2

∪ [Θ(φt)], [M ]
〉∣∣∣∣∣ ≤ A(t) Vol(φt).

Then the energy and the length of {φt}t∈(0,T ] are finite.

We finish this part with a few remarks about (co)homology groups. If M is a
smooth manifold, we denote by Hp(M) the de Rham cohomology groups, which are
isomorphic to the singular cohomology groups with real coefficients. The singular
homology groups with real coefficients are denoted by Hp(M) and ⟨·, ·⟩ denotes the
natural pairing between Hp(M) and Hp(M). Any homology class [C] ∈ Hp(M)
can be represented by a smooth singular p-cycle C = ∑

aiσi, where σ : ∆p → M

are smooth p-simplices and ∆p denotes the standard oriented p-simplex. If η is a
closed p-form on M , we have

⟨[η], [C]⟩ =
∑

ai

∫
∆p

σ∗
i η.

In particular the right-hand side does not depend on a particular choice of repre-
sentative for [C], and for this reason we will denote (with a slight abuse of notation)∫

[C] η = ⟨[η], [C]⟩. In the remainder of the chapter, all singular chains are assumed
to be smooth.

If g is a Riemannian metric on M , the volume of a p-chain C = ∑
i aiσi is

defined by
Vol(C, g) =

∑
i

|ai|
∫

∆p

Volσ∗
i g .

If M has dimension 7 and is endowed with a co-closed G2-structure φ, the dual
4-form Θ(φ) is a calibration [67]. Hence for any 4-simplex σ we have ±σ∗Θ(φ) ≤
Volσ∗gφ , and therefore for any 4-cycle D we have a bound∣∣∣∣∣

∫
[D]

Θ(φ)
∣∣∣∣∣ ≤ Vol(D, gφ). (4.10)

Note that the left-hand side is topological and independent of the choice of repre-
sentative of [D], whilst the right-hand side is geometric and depends on the choice
of 4-cycle D.

4.2.3 Incompleteness for generalised Kummer G2-manifolds. In this sec-
tion, we consider a simple model of gluing construction of compact G2-manifolds.
Topologically, it can be described as follows. Let U be a compact oriented 7-
manifold with boundary and denote U = U\∂U . We denote by Σ1, . . . ,Σm the
connected components of ∂U , each of which is a compact oriented 6-manifold.
We may assume that there are disjoint neighbourhoods Wi of Σi, diffeomorphic
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Figure 4.1: Gluing construction.

to (0, 1] × Σi, such that U0 = U\∐i Wi is a manifold with boundary diffeomor-
phic to U and a deformation retract of U . We denote by U0 its interior, which
is diffeomorphic to U . For each i, we consider a compact oriented 7-manifold Y i

with boundary ∂Y i = Σi, and let Ki be a compact subset of Yi = Y i\Σi such
that Yi\Ki ≃ (−1, 0) × Σi. We may assume that the orientation induced by Y i

on Σi is the opposite of the one induced by U , and that Ki is a compact manifold
with boundary diffeomorphic to Y i and a deformation retract of Y i. Given this
data we construct a compact oriented 7-manifold M = (U ∐i Yi)/ ∼ by identifying
the i-th end of U with the end of Yi; that is, the equivalence relation ∼ identifies
(s, xi) ∈ (0, 1) × Σi ⊂ U with (−s, xi) ∈ (−1, 0) × Σi ⊂ Yi. Thus U and each Yi

can be seen as open subsets of M , and moreover M can be decomposed as the
disjoint union U0

∐(⨿i(0, 1) × Σi)
∐(⨿iKi).

The real homology groups of M can be deduced from the Mayer–Vietoris exact
sequence of the decomposition M = U ∪ (∐i Yi), which reads:

· · · → ⊕iHp(Σi) → Hp(U) ⊕ (⊕iHp(Yi)) → Hp(M) → ⊕iHp−1(Σi) → · · · (4.11)

We are mainly interested in p = 3, 4. As Hp(U) ≃ Hp(U) and Hp(Yi) ≃ Hp(Y i),
the maps ⊕iHp(Σi) → Hp(U) ⊕ (⊕iHp(Yi)) in (4.11) are determined by the long
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exact sequences of the pairs (U, ∂U) and (Y i, ∂Y i). A particular role is played by
the boundary maps

δi : H3(Y i, ∂Y i) → H2(∂Y i)

coming from the exact sequences of (Y i, ∂Y i). In the next lemma, we show that if
all the boundary maps δi are trivial, then H3(M) has a basis represented by cycles
supported away from the gluing region.

Lemma 4.10. Assume that δi = 0 for all i. Then there are 3-cycles C1, . . . , Cn

supported in U0 and Ci,1, . . . , Ci,ni
supported in Ki such that:

(i) The homology classes [Ck], [Cij] form a basis of H3(M).

(ii) If [Dk], [Dij] ∈ H4(M) is the dual basis for the intersection product, then the
classes [Dij] can be represented by cycles supported in Ki.

Proof. Since δi = 0, the maps H3(Y i) → H3(Y i, ∂Y i) are surjective. Thus we
deduce that H3(Yi) ≃ H3(Y i) ≃ im(H3(∂Y i) → H3(Y i)) ⊕ Ei, where Ei ⊂ H3(Yi)
is isomorphic to H3(Y i, ∂Y i). As the maps H2(∂Y i) → H2(Y i) are injective, so is
the map ⊕iH2(Σi) → H2(U) ⊕ (⊕iH2(Yi)) in the exact sequence (4.11). Thus we
obtain an exact sequence

· · · → ⊕iH3(Σi) → H3(U) ⊕ (⊕iH3(Yi)) → H3(M) → 0.

Hence there exists a subspace E ⊂ H3(U) such that E⊕E1⊕· · ·Em is a complement
of the image of ⊕iH3(Σi) in H3(U) ⊕ (⊕iH3(Yi)), and therefore H3(M) ≃ E ⊕
E1 ⊕ · · · ⊕ Em. It follows that there are homology classes [Ck] ∈ E ⊂ H3(U),
k = 1, . . . , n, and [Cij] ∈ Ei ⊂ H3(Yi), i = 1, . . . ,m, j = 1, . . . , ni, which form a
basis of H3(M), where n = dimE and ni = dimEi. Moreover, Ki is a deformation
retract of Y i and hence the classes [Cij] can be represented by cycles supported
in Ki, and similarly the classes [Ck] can be represented by cycles supported in U0

since H3(U0) ≃ H3(U).
Now we prove that the homology classes [Dij] ∈ H4(M) can be represented by

cycles supported in Ki. As each Y i is an oriented compact manifold with boundary,
there are non-degenerate intersection pairings H4(Y i) × H3(Y i, ∂Y i) → R. By
construction, the basis [Cij] of Ei ⊂ H3(Yi) induces a basis of H3(Y i, ∂Y i), and
we denote by [D′

ij] ∈ H4(Y i) its dual basis for the intersection product of Y i. We
can assume that the cycles D′

ij are supported in Ki since H4(Ki) ≃ H4(Y i). As
the classes [C1], . . . , [Cn] ∈ H3(M) are represented by cycles supported in U0 and
the classes induced by [D′

ij] in H4(M) are represented by cycles supported in Ki,
the intersection of [D′

ij] and [Ck] is trivial in M , and the intersection of [D′
ij] and

[Ci′j′ ] is 1 if (i, j) = (i′, j′) and 0 otherwise. Thus [Dij] = [D′
ij] ∈ H4(M).
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From the G2-perspective, we typically think of U as the smooth locus of a
singular G2-manifold, and in particular U comes equipped with a torsion-free
G2-structure φ0. The noncompact manifolds Yi are endowed with families φi,t

of torsion-free G2-structures with prescribed asymptotic behaviour, which should
match the behaviour of φ0 near the i-th end of U . One then uses some inter-
polation procedure to construct a family of closed G2-structures φt on M , such
that outside of the gluing region φt|U0

= φ0|U0
and φt|Ki

= φi,t|Ki
. Much of

the subtlety of the construction lies in the choice of interpolation in the gluing
region, but for our purpose these details are irrelevant. Provided the torsion of φt

is small enough and there is some control on other geometric quantities (notably
the injectivity radius and the norm of the curvature tensor), the general result of
Joyce [66, Th. 11.6.1] ensures the existence of a torsion-free G2-structure φ̃t on M
such that [φ̃t] = [φt] ∈ H3(M) and ∥φ̃t − φt∥C0 ≤ ϵ1, where ϵ1 > 0 is some fixed
small constant. By taking ϵ1 small enough we can assume that ∥φ̃ − φ∥C0 ≤ ϵ1

implies 2−1gφ ≤ gφ̃ ≤ 2gφ for any G2-structures φ̃, φ. The following theorem gives
sufficient conditions for the path {φ̃t}t∈(0,T ] to have finite energy and length in the
moduli space:

Theorem 4.11. Let {φ̃t}t∈(0,T ] be a continuous family of torsion-free G2-structures
and {φt}t∈(0,T ] be a family of closed G2-structures on M , such that [φ̃t] = [φt] ∈
H3(M) and ∥φ̃t − φt∥C0 ≤ ϵ1 for all t ∈ (0, T ]. We assume that φ0 = φt|U0

is
independent of t, that each Yi is endowed with a family of closed G2-structures
{φi,t}t∈(0,T ] such that φt|Ki

= φi,t|Ki
for all t ∈ (0, T ], and that the following

assumptions are satisfied:

(i) b1(M) = 0, and each boundary map δi : H3(Y i, ∂Y i) → H2(∂Y i) is trivial.

(ii) For all i and all [C] ∈ H3(Yi), the function fi,[C](t) =
∫

[C] φi,t is of class C2

and f ′′
i,[C] ∈ L1((0, T ]).

(iii) There exists a metric gi on each Yi such that gφi,t
≤ gi for all t ∈ (0, T ].

Then {φ̃t}t∈(0,T ] induces a path of class C2 in M with finite energy and length.

Proof. Let us consider the bases [Ck], [Cij] ∈ H3(M) and [Dk], [Dij] ∈ H4(M)
provided by Lemma 4.10, and denote by [C∗

k ], [C∗
ij] ∈ H3(M) and [D∗

k], [D∗
ij] ∈

H4(M) their respective dual bases. The cohomology class [φ̃t] ∈ H3(M) reads

[φ̃t] = [φt] =
n∑

k=1
ak(t)[C∗

k ] +
m∑

i=1

ni∑
j=1

aij(t)[C∗
ij]
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where
ak(t) =

∫
[Ck]

φt, and aij(t) =
∫

[Cij ]
φt.

Since the restriction φt|U0
is constant and the homology classes [C1], . . . , [Cn] are

represented by cycles supported in U0, the functions a1, . . . , an are constant. More-
over, as the homology classes [Cij] are represented by cycles supported in Ki and
φt|Ki

= φi,t|Ki
, we deduce that aij = fi,[Cij ], and thus aij is of class C2, a′′

ij is L1

and therefore a′
ij is uniformly bounded. This implies in particular that {φ̃t}t∈(0,T ]

induces a path of class C2 in M .
Similarly, the cohomology class of the 4-form can be written

[Θ(φ̃t)] =
n∑

k=1
bk(t)[D∗

k] +
m∑

i=1

ni∑
j=1

bij(t)[D∗
ij]

where
bk(t) =

∫
[Dk]

Θ(φ̃t) and bij(t) =
∫

[Dij ]
Θ(φ̃t).

As the bases [C∗
k ], [C∗

ij] ∈ H3(M) and [D∗
k], [D∗

ij] ∈ H4(M) are dual for the cup-
product and the functions ak are constant, it follows that:〈

d[φ̃t]
dt

∪ [Θ(φ̃t)], [M ]
〉

=
m∑

i=1

ni∑
j=1

bij(t)a′
ij(t), and

〈
d2[φ̃t]
dt2

∪ [Θ(φ̃t)], [M ]
〉

=
m∑

i=1

ni∑
j=1

bij(t)a′′
ij(t).

We remark that Vol(φt) ≥
∫

U0
φ0 > 0 for all t ∈ (0, T ], and as ∥φ̃t − φt∥C0 ≤ ϵ1 it

follows that Vol(φ̃t) is uniformly bounded below away from zero. Moreover, since
the functions a′

ij are uniformly bounded and the functions a′′
ij are L1, it is enough

to show that the functions bij are uniformly bounded to apply Corollary 4.9.
Since φ̃t is co-closed the 4-form Θ(φ̃t) is a calibration, and by (4.10) we have

|bij(t)| =
∣∣∣∣∣
∫

[Dij ]
Θ(φ̃t)

∣∣∣∣∣ ≤ Vol(Dij, gφ̃t
).

As ∥φ̃t −φt∥C0 ≤ ϵ1 we have gφ̃t
≤ 2gφt , and thus gφ̃t

∣∣∣
Ki

≤ 2 gφi,t

∣∣∣
Ki

≤ 2 gi|Ki
. By

Lemma 4.10, we can assume that the 4-cycle Dij is supported in Ki and thus

|bij(t)| ≤ Vol(Dij, gφ̃t
) ≤ 4 Vol(Dij, gi).

Hence the functions bij are uniformly bounded. Therefore the path {φ̃t}t∈(0,T ]

satisfies the assumptions of Corollary 4.9 and the theorem follows.
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In the case of the generalised Kummer construction [64, 65], U is the comple-
ment of the singular set of a G2-orbifold T 7/Γ, where Γ is a finite subgroup of
G2, and thus U carries a flat G2-structure φ0. Each connected component of the
singular set of T 7/Γ is assumed to have a neighbourhood isometric to either

1. (T 3 × B4/Gi)/Fi, where T 3 is a flat 3-torus, B4 ⊂ C2 a Euclidean ball, Gi

a finite subgroup of SU(2) acting freely on C2 except at the origin, and Fi a
group of isometries of T 3 × C2/Gi acting freely on T 3; or

2. (S1 × B6/Gi)/Fi, where S1 is a flat circle, B6 ⊂ C3 a Euclidean ball, Gi a
finite subgroup of SU(3) acting freely on C3 except at the origin, and Fi a
group of isometries of S1 × C3/Gi acting freely on S1.

The noncompact manifold Yi used to resolve a singularity of the first type
is Yi = (T 3 × Xi)/Fi where Xi is an Asymptotically Locally Euclidean (ALE)
space with holonomy SU(2) asymptotic to C2/Gi, equipped with an Fi-action
such that (T 3 × Xi)/Fi is asymptotic to (T 3 × C2/Gi)/Fi. It has boundary Σi =
(T 3 ×S3/Gi)/Fi, and in particular H2(Σi) ≃ H2(T 3)Fi . In addition, it follows from
the Künneth theorem – taking into account that H1(Xi) = 0 since hyperkähler
ALE spaces are simply connected – that H2(Yi) ≃ H2(T 3)Fi ⊕ H2(Xi)Fi . Thus
the map H2(∂Y i) → H2(Y i) is injective, which implies that the boundary map
δi : H3(Y i, ∂Y i) → H2(∂Y i) is trivial. The manifold Yi is endowed with a family
of torsion-free G2-structures lifting to T 3 ×Xi as

φi,t = θ1 ∧ θ2 ∧ θ3 − t2(θ1 ∧ ωi,1 + θ2 ∧ ωi,2 + θ3 ∧ ωi,3)

where (θ1, θ2, θ3) is a basis of harmonic 1-forms on T 3 and (ωi,1, ωi,2, ωi,3) is an ALE
hyperkähler triple on Xi. It follows that for any homology class [C] ∈ H3(Yi) we
have fi,[C](t) = ai,[C] + bi,[C]t

2 for some constants ai,[C], bi,[C] ∈ R. Moreover, the
associated metric on T 3 × Xi is a product gT 3 + t2gXi

, where gT 3 is a flat metric
on T 3 and gXi

is an ALE metric on Xi. In particular gφi,t
≤ gφi,1 for all t ∈ (0, 1].

For the second type of singularities, the manifold Yi is of the form Yi = (S1 ×
Zi)/Fi where Zi is an ALE manifold with holonomy SU(3) asymptotic to C3/Gi,
equipped with an Fi-action such that (S1×Zi)/Fi is asymptotic to (S1×C3/Gi)/Fi.
Here the boundary of Y i is Σi = (S1 × S5/Gi)/Fi so that H2(Σi) = 0, which in
particular implies that the boundary map δi : H3(Y i, ∂Y i) → H2(∂Y i) is trivial.
There is a family of torsion-free G2-structures on Yi which lifts to S1 × Zi as

φi,t = t2θ ∧ ωi + t3 Re Ωi
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on Yi, where θ is a nontrivial harmonic form on S1, ωi a Kähler form and Ωi a
holomorphic volume form on Zi such that (ωi,Ωi) is an ALE torsion-free SU(3)-
structure. Thus for any homology class [C] ∈ H3(Yi) there are constants ai,[C] and
bi,[C] such that fi,[C](t) = ai,[C]t

2 + bi,[C]t
3. As in the previous case, the metric gφi,t

lifts to the product gS1 + t2gZi
on S1 × Zi and hence gφi,t

≤ gφi,1 for t ∈ (0, 1].
When the gluing data of the generalised Kummer construction is chosen so

that b1(M) = 0, all of the assumptions of our theorem are satisfied and thus the
degeneration to T 7/Γ corresponds to a finite-distance limit in the moduli space.

Corollary 4.12. The generalised Kummer G2-manifolds constructed in [64, 65]
have incomplete moduli spaces.

4.3 Further observations

In the last section of this chapter we make some additional comments on the
incompleteness question. In §4.3.1, we give a necessary condition for the limit of
a path whose cohomology classes form a line segment in H3(M) to be at infinite
distance (this appears in [84]). In the next part, which is original material and
does not appear in the article, we use the contrapositive to prove that the other
known resolution methods also yield G2-manifolds with incomplete moduli spaces.
In 4.3.3 we finish with some open questions.

4.3.1 Infinite-distance limits and the volume of cycles. Let us consider
a path of torsion-free G2-structures {φt}t∈(0,T ] whose cohomology classes form a
line segment in H3(M) (see Figure 4.2). We saw in the previous section that this
occurs in the generalised Kummer construction when all the singularities of T 7/Γ
are resolved by gluing quotients of products of a 3-torus and a hyperkähler ALE
space (then the cohomology class [φt] is an affine function of t2). We will see
that it is also satisfied for the Joyce–Karigiannis construction and the resolution
of isolated conical singularities. In this general situation, we can give a very simple
sufficient condition for the length of the path to be finite; or by contrapositive, a
necessary condition for the limit of this path to be at infinite distance.

To further motivate this question, let us compare with the case of Kähler
cones, which we mentioned in introduction. Let X be a compact Kähler manifold
of (complex) dimension n ≥ 2 and let K be the cone of Kähler classes on X.
This is an open convex cone of the space of real (1, 1)-forms. Let us denote by
K the closure of K in H1,1(X;R), and ∂K = K \K . The Kähler cone has
a natural metric (the Hodge metric), which comes from the Hessian potential
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H3(M)

[φt]
[φ0]

M

φtD

∂M

Figure 4.2: A path in M forming a line segment in H3(M).

− log
∫

X ωn/n! = − log Vol(ω). A natural question to ask is which classes α ∈ ∂K

(called numerically effective, or nef classes in complex geometry) correspond to
infinite-distance limits for this metric. The answer is simple: either

∫
X αn = 0, in

which case this is an infinite-distance limit; or
∫

X αn > 0 (such a class is called big)
and the limit is at finite distance [92]. Let us give a brief sketch of the argument.
If
∫

X αn = 0, then any path ωt ∈ K converging to α ∈ H1,1(X;R) has
∫

X ωn
t → 0,

and such limit is at infinite distance. Otherwise
∫

X αn > 0, and if ω ∈ K we can
consider the path ωt = α + tω. For t ∈ (0,∞) we have ωt ∈ K , and moreover
dωt

dt
= ω and d2ωt

dt2 = 0. Arguing along the same lines as in the proof of Proposition
4.8, one can see that for any τ ∈ (0, 1] the energy of the path {ωt}t∈(τ,1] is

E1
τ (ωt) =

∫
X ω ∧ (α + τω)n−1

(n− 1)! Vol(ωτ ) −
∫

X ω ∧ (α + ω)n−1

(n− 1)! Vol(ω1)
·

Since
∫

X αn > 0, Vol(ωτ ) is uniformly bounded below away from zero as τ → 0,
and as the numerator of the first term is a polynomial function of τ it remains
bounded as τ → 0. It follows that the path {ωt}t∈(0,1] has finite energy and length
in K , and thus α is a finite-distance limit.

Let us now go back to the G2-case, and consider family of torsion-free G2-
structures {φt}t∈(0,T ] on a compact 7-manifold M with b1(M) = 0, inducing a
smooth path in the moduli space M . We assume that [φt] = [φ0] + t[φ̇], where
[φ0], [φ̇] ∈ H3(M) are fixed cohomology classes. Heuristically, we want to think
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of [φ0] as lying on the boundary of the image of M in H3(M). As φ̈t = 0 we
have d2F (φt)

dt2 = D2
φt

F (φ̇t, φ̇t) ≥ 0, and thus the function F (φt) = −3 log Vol(φt)
is convex on (0, T ]. Hence Vol(φt) is bounded above, and either Vol(φt) → 0 as
t → 0 or it is uniformly bounded below away from zero. If the volume shrinks to
zero, then the limit of φt as t → 0 is at infinite distance in the moduli space. The
remaining interesting case is when Vol(φt) is uniformly bounded below away from
zero. As d2[φt]

dt2 = 0, the energy takes a particularly simple form:

ET
τ (φt) = ⟨[φ̇] ∪ [Θ(φτ )], [M ]⟩

Vol(φτ ) − ⟨[φ̇] ∪ [Θ(φT )], [M ]⟩
Vol(φT ) · (4.12)

So far the situation is very similar to that of Kähler cones, except for one crucial
difference, which is that [Θ(φτ )] has no reason to be a merely polynomial function
of τ . Thus we do not know whether the numerator of the first term remains
bounded as τ → 0, and it may be that the limit of φt as t → 0 is at infinite
distance in the moduli space even though the volume is bounded below. Such
a phenomenon, if it occurs, would be a feature of G2-moduli spaces that has no
analogy in the geometry of Kähler cones.

To gain more insight into the geometry of such a situation, let us denote by
PD[φ̇] ∈ H4(M) the Poincaré-dual class of [φ̇]. Then we can bound the numerators
in (4.12) by

|⟨[φ̇] ∪ [Θ(φt)], [M ]⟩| =
∣∣∣∣∣
∫

PD[φ̇]
Θ(φt)

∣∣∣∣∣ ≤ Vol(PD[φ̇], gφt) (4.13)

where we define Vol(PD[φ̇], gφt) as the infimum of Vol(D, gφt) taken over the 4-
cycles D representing PD[φ̇] ∈ H4(M). If Vol(PD[φ̇], gφt) is bounded, then we
easily deduce that the energy of {φt}t∈(0,T ] is finite. As the energy ET

τ (φt) is a
decreasing function of τ , it is in fact enough to assume that Vol(PD[φ̇], gφti

) is
uniformly bounded for some sequence ti → 0. By contrapositive, we obtain:

Proposition 4.13. Let {φt}t∈(0,T ] be a family of torsion-free G2-structures on M

inducing a smooth path in M , and suppose that the cohomology class d[φt]
dt

= [φ̇]
is constant in H3(M) and that the volume of (M,φt) is uniformly bounded below
away from zero. If the limit of φt as t → 0 is at infinite distance in the moduli
space, then

Vol(PD[φ̇], gφt) → ∞ as t → 0.

Heuristically, this result says that if there is a point of the boundary of M

that can be approached by a path of torsion-free G2-structures whose cohomology
classes form a line segment in H3(M), then there is the following trichotomy.
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Either the volume is shrinking to zero along the path, in which case the limit is at
infinite distance; or the volume is bounded below away from zero and the length
of the path is infinite, and in that case there must be a homology class in degree
4 whose volume is going to infinity; or this is a finite-distance limit. Some of the
generalised Kummer G2-manifolds provide examples of the third case, and the first
case occurs for instance by scaling any torsion-free G2-structure. However, we do
not know if the second case can happen, and as previously noted this would have
to be a phenomenon specific to G2-moduli spaces, by contrast with what can occur
at the boundary of Kähler cones.

Proposition 4.13 can be generalised to families of torsion-free G2-structures
whose cohomology classes define a path in H3(M) which is regular enough. For
instance, it is straightforward to deduce from Corollary 4.9 the following:

Proposition 4.14. Let {φt}t∈(0,T ] be a family of torsion-free G2-structures on M

inducing a path of class C2 in M , and assume that the following conditions are
satisfied:

(i) The volume Vol(φt) is uniformly bounded below away from zero.

(ii) The function t ∈ (0, T ] → d2

dt2 [φt] ∈ H3(M) is L1.

(iii) The volume of any homology class [D] ∈ H4(M) with respect to gφt is uni-
formly bounded.

Then {φt}t∈(0,T ] has finite energy and length in the moduli space.

In the next part we shall use this proposition to prove that G2-manifolds con-
structed by the Joyce–Karigiannis construction [68] or by resolution of isolated
conical singularities [72] also correspond to finite-distance degenerations in the
moduli space. In these cases it is clear that the total volume is bounded below
away from zero and that all homology classes have bounded volume, and the only
assumption that is left to check is the one concerning the derivatives of the path
of cohomology classes. In fact in the first two cases the path of cohomology classes
form a line segment in H3 so this condition is easy to verify; and for the resolu-
tions of T 7/Γ the path of cohomology classes is a polynomial function of the gluing
parameter.
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4.3.2 Other degenerate limits. Let us begin with the Joyce–Karigiannis con-
struction. Although the geometrical aspects of this construction are substantially
more complicated than the generalised Kummer construction that we treated ear-
lier, its topology is quite simple. Specifically, we will see that we are again in
the very favourable situation where we can choose a basis of 3-cycles supported
away from the gluing region, which makes it very easy to compute the path of
cohomology classes.

First, let us briefly outline the topology of the construction. It starts with a
G2-manifold (N,φ) endowed with an involution ι preserving φ, such that the fixed
locus is an associative submanifold L ⊂ N , and a nowhere-vanishing harmonic
1-form λ ∈ Ω1(M). Let ν be the normal bundle of L in N . The G2-structure φ
induces an identification of T ∗L with Λ2

+ν
∗ by inserting a 1-form into φ. Conse-

quently, there is a unique family of complex structures J : ν → ν defined on the
fibres of the normal bundle such that λ can be identified with h(J ·, ·), where h is
the restriction of gφ to ν. One can use this data to construct a fibre bundle P → L

by blowing-up each fibre νp/⟨ι⟩ ≃ R4/{±1} with respect to the complex structure
Jp. The exceptional divisors fit into a bundle Q → L with fibres diffeomorphic
to S2, and there is a natural map P\Q → (ν/⟨ι⟩)\L. Using a ι-invariant tubular
neighbourhood of L in N , one can resolve the orbifold N/⟨ι⟩ by excising a small
neighbourhood of L and gluing in a neighbourhood of Q in P so as to obtain a
compact manifold M .

In [68, Prop. 6.1], the authors prove that for any 0 ≤ k ≤ 7 the cohomology
group Hk(M) is isomorphic to Hk(N/⟨ι⟩) ⊕Hk−2(L). The proof makes use of the
important property that the normal bundle ν of L is trivial [68, Rem. 2.14]. In
particular, the bundle P retracts onto Q ≃ L× S2 and therefore

Hk(P ) ≃ Hk(L× S2) ≃ Hk(L) ⊕Hk−2(L).

Similarly, the gluing region of the construction, homeomorphic to (ν/⟨ι⟩)\L, is
homotopy-equivalent to a trivial SO(3)-bundle over L, and since SO(3) ≃ S3/{±1}
is a rational homology sphere it follows that

Hk((ν/⟨ι⟩)\L) ≃ Hk(L× SO(3)) ≃ Hk(L) ⊕Hk−3(L).

By duality, if follows that Hk(M) ≃ Hk(N/⟨ι⟩) ⊕ Hk−2(L), Hk(P ) ≃ Hk(L) ⊕
Hk−2(L) and Hk((ν/⟨ι⟩)\L) ≃ Hk(L) ⊕Hk−3(L).

Let us now prove that we are in the situation described in Lemma 4.10. First,
we claim that H3(N/⟨ι⟩) ≃ H3((N/⟨ι⟩)\L). It suffices to prove that the rela-
tive homology group H3(N/⟨ι⟩, (N/⟨ι⟩)\L) vanishes. By excision, it is isomorphic
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to H3(ν/⟨ι⟩, (ν/⟨ι⟩)\L). Now ν/⟨ι⟩ retracts onto L and we see that the map
H3(ν/⟨ι⟩) → H3((ν/⟨ι⟩)\L) is surjective and the map H2(ν/⟨ι⟩) → H2((ν/⟨ι⟩)\L)
is an isomorphism. Therefore H3(N/⟨ι⟩, (N/⟨ι⟩)\L) ≃ H3(ν/⟨ι⟩, (ν/⟨ι⟩)\L) = 0.
In particular H3(N/⟨ι⟩) has a basis of represented by cycles supported away
from L. On the other hand, we have H2(P\Q) ≃ H2((ν/⟨ι⟩)\L) ≃ H2(L) and
H2(P ) ≃ H2(L) ⊕ H0(L) and therefore the map H2(P\Q) → H2(P ) is injective,
which in turn implies that the boundary map H3(P, P\Q) → H2(P\Q) must be
trivial. Therefore there is a basis of H3(M) represented by 3-cycles Cj supported
away from the gluing region, and if Dj are cycles representing the dual basis of
H4(M) we can ensure that Dj is supported in a compact region of P if Cj is.

The construction of a family of closed G2-structures φt on M with sufficiently
small torsion to be perturbed to a family of nearby torsion-free G2-structures φ̃t

is quite involved, and we will not attempt to summarise it. Rather, we will just
point out the two facts that are relevant to us. The first one is that, as for the
generalised Kummer construction, the restriction of φt to the interior of (N/⟨ι⟩)\L
away from the gluing region coincides with the original torsion-free G2-structure
φ. Secondly, in a neighbourhood of Q in P the 3-form φt is affine in the variable
t2. Hence the path of cohomology classes [φ̃t] ∈ H3(M) forms a line segment. In
the limit where t → ∞, (M, gφ̃t

) converges to the orbifold (N/⟨ι⟩, gφ), and we can
apply either Theorem 4.11 or Proposition 4.13 to deduce that this occurs at finite
distance in the moduli space. Hence we deduce:

Corollary 4.15. Let (M, φ̃t) be a 1-parameter family of torsion-free G2-structures
obtained from the Joyce–Karigiannis construction [68]. Then the limit t → 0 lies
at finite distance in the moduli space.

Let us now move on to the resolution of G2-manifolds with isolated conical
singularities. This construction was carried out by Karigiannis in [72], and takes as
building blocks a singular compact G2-manifold (N,φ0) with isolated singularities
p1, . . . , pm asymptotic (with rates µ1, . . . , µm > 0) to a G2-cone (Ci ≃ (0,∞) ×
Σi, φCi

)2 and a finite collection of noncompact asymptotically conical G2-manifolds
(Y1, φ1), . . . , (Ym, φm) asymptotic to C1, . . . , Cm (with rates ν1, . . . , νm ≤ −3). We
do not need to know much about the technical details of the construction, but
an important fact is that it is generally obstructed and we need to describe the
2As of today, there are no examples of compact G2-manifolds with isolated conical singularities,
and only a handful of G2-cones. Hence this construction does not produce new examples of
compact G2-manifolds yet. However, it is generally expected that compact conically singular
G2-manifolds should exist in large numbers.
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obstructions in order to understand the topological aspects of the construction and
compute the path of cohomology classes.

In a nutshell, each singularity pi has a pointed neighbourhood diffeomorphic
to (0, ϵ) × Σi where φ reads

φ0 = φCi
+ dαi

where φCi
is a conical torsion-free G2-structure on the cone Ci and dαi = O(rµi)

(r is the radial coordinate function). Likewise, the end of Yi is diffeomorphic to
(R,∞) × Σi and φi can be written

φi = φCi
+ ξi + dζi

where ξi is a harmonic 3-form on the link Σi and ζi a 2-form with |ζi| = O(r−3) and
|dζi| = O(r−4). Note that for the cone metric we have |ξi| = O(r−3). In addition,
the leading order term of dζi can be written −νi/r for some harmonic 2-form νi

on σi, so that dζi = r−2dr ∧ νi. Let us write ηi the dual 4-form of νi on Σi.
From this we see that in order to interpolate between φ0 and φi, one needs a

harmonic 3-form ξ on N asymptotic to ξi near each singular point pi. This gives
a first obstruction which can be shown to be topological using weighted Hodge
theory (see [72, Th. 3.10]): the obstruction vanishes if and only if the tuple of
cohomology classes ([ξ1], . . . , [ξm]) ∈ ⊕iH

3(Σi) lies in the image of H3(N ′), where
N ′ is the compact manifold with boundary obtained by replacing each pi with
a boundary component homeomorphic to Σi. There is also a second topological
obstruction coming from the interpolation of the dual 4-forms: namely, in order
to do the construction one needs to assume that the tuple of cohomology classes
([η1], . . . , [ηm]) ∈ ⊕iH

4(Σi) lies in the image of H4(N ′) in the long exact sequence
of the pair (N ′,⨿iΣi).

Remark 4.16. The harmonic form ξi necessarily vanishes if νi < −3, and so does
ηi if νi < −4. Hence the obstructions only occur if the AC manifolds Yi have a
(relatively) slow convergence rate to their asymptotic cone. One cannot hope that
the convergence could be faster in general since the three asymptotically conical
Bryant-Salamon manifolds have convergence rate −3 or −4 [75].

Assuming that the first obstruction vanishes, then one may find a harmonic
3-form on N such that ξ = ξi + dAi on (0, ϵ) × Σi near pi, where dAi decays
faster than O(r−3). Let us then define, for some small t > 0, the closed G2-
structures φ0,t = φ0 + t3ξ on N and φi,t = t3φt on Yi. Then φ0,t is equal to
φCi

+t3ξi+d(αi+t3Ai) on (0, ϵ)×Σi, and φi,t = t3φCi
+t3ξi+d(t3ζi) on (R,∞)×Σi.

In particular, the domain (R, t−1ϵ) × Σi of Yi is almost isometric to the domain
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(tR, ϵ) of N , and we can form a compact manifold Mt by identifying the two regions
in order to resolve each conical singularity pi by gluing in a rescaled copy of Yi.
Clearly, all the compact manifolds Mt are diffeomorphic to some fixed manifold
M . Moreover Mt is endowed with a closed G2-structure φt which is equal to φ0,t

away from the singularities in the bulk of N , to φi,t away from the ends in the
bulk of Yi, and to

φCi
+ t3ξi + d(χt(αi + t3Ai) + (1 − χt)t3T ∗

t ζi) (4.14)

in the gluing region (tR, ϵ) × Σ. In this expression, Tt is the homothety of factor
t−1 of the cone and χt is a cutoff function3 of r equal to 0 if r ≤ tR and 1 if r ≥ ϵ.
Note that T ∗

t φi = t−3φCi
and T ∗

t ξi = ξi which explains why Tt only acts on ζi.
Using Joyce’s theorem, Karigiannis proved that provided the second obstruc-

tion also vanishes, then for t small enough φt can be perturbed to a nearby torsion-
free G2-structure φ̃t within the same cohomology class. Thus we obtain a contin-
uous 1-parameter family of torsion-free G2-structures on M , which can be shown
to converge to the original conically singular manifold (N,φ0) in the Gromov-
Hausdorff sense as t → 0. In particular, there is a definite volume lower bound,
and moreover for any 0 ≤ k ≤ 7 it is easy to construct a basis of Hk(M) repre-
sented by cycles whose volume is uniformly bounded (in a moment we will do it
for k = 3). In turns out that the path of cohomology classes [φ̃t] = [φt] ∈ H3(M)
is an affine function of the variable t3, and therefore:

Corollary 4.17. Let (M, φ̃t) be the 1-parameter family of torsion-free G2-structures
constructed by resolving a compact G2-manifold with isolated conical singularities
as in [72]. Then the limit t → 0 lies at finite distance in the moduli space.

Let us justify our claim about the path of cohomology classes. If suffices to
prove that there is a basis of homology classes [Cj] ∈ H3(M) such that

∫
[Cj ] φt =

ai + t3bi for some ai, bi ∈ R. Now there are two sources of nontrivial homology
classes in H3(M). The first source comes from the cycles supported away from
the gluing region, for which the claim is obvious. Those cycles represent the
image of H3(Ut) ⊕ (⊕iH3(Yi,t)) → H3(M) in the exact sequence, where Ut is
obtained from N by excising the neighbourhood (0, tR) × Σi of each singularity
and Yi,t is obtained from Yi by excising the end (t−1ϵ,∞) × Σi. A complement
of this image is spanned by cycles which can be constructed as follows. Let Bi

be a collection of 2-cycles in Σi such that [Bi] ∈ H2(Σi) lies in the image of the
3For the analysis it is important to make a good choice of cutoff function, but this does not affect
the cohomology class of φ̃t since a different choice would only add a globally exact form.
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boundary map δi : H3(Yi,Σi) → H2(Σ2) and ⊕i[Bi] belongs to the image the
map H3(Uϵ) → ⊕iH2(Σi). Then there is a 3-cycle C supported in U ϵ such that
∂C0 = −(B1 + · · ·+Bm)×{ϵ} and for each i there is a 3-cycle Ci in Y i,R such that
∂Ci = Bi×{R}. In the gluing region (t−1R, ϵ)×Σi we consider C ′ = ⊕iBi×[t−1R, ϵ]
(appropriately subdivided into 3-simplices), and adding them all we obtain a cycle
C = C0 + C1 + . . .+ Cm + C ′ in M .

Let us now calculate
∫

C φs. Clearly each term
∫

Cj
φt =

∫
Cj
φj,t is an affine

function of t3 for 0 ≤ j ≤ m, so the only thing that requires some care is the
computation of

∫
C′ φt. In the gluing region (tR, ϵ) × Σi, φt is given by (4.14). The

integral
∫

C′ ξi vanishes since ξi is a 3-form on Σi and therefore ∂r⌟ξi = 0. On the
other hand, the conical torsion-free G2-structure can be written φCi

= d(r3ωi) for
some 2-form on Σi [72, Prop. 2.4] and hence Stockes’ theorem yields

∫
C′
φt =

m∑
i=1

(ϵ3 − t3R3)
∫

[Bi]
ωi +

∫
Bi×{ϵ}

αi + t3
∫

Bi×{ϵ}
Ai −

∫
Bi×{R}

t3ζi

which is again manifestly an affine function of the variable t3. It is interesting to
note that we are again in the situation where the path of cohomology classes forms
a line segment in H3(M).

Let us make a few comments on the general method of resolution of flat G2-
orbifolds T 7/Γ described in [66, Ch. 11], which we will not attempt to treat in de-
tail. The idea is to resolve the singularities by gluing in various rescaled manifolds
with appropriate asymptotics (coined QALE G2-manifolds in the monograph).
Describing the topology of these resolutions would be fastidious in general since
various components of the singular set might intersect, but since we are rescaling
the QALE manifolds by powers of a gluing parameter seems possible that one could
obtain polynomial bounds for the derivatives of the path of cohomology classes of
the glued G2-structure (by choosing an appropriate parametrisation, if necessary).
In the same way, we can always construct a collection of cycles representing a basis
of the homology of M by patching up various cycles on each piece of the construc-
tion, and these will have uniformly bounded volume. Hence we would expect that
these more complicated resolutions of T 7/Γ also yield finite-distance degenerate
limits in the moduli space, although one would need to write things more carefully
in order to properly justify it.

4.3.3 Follow-up questions. Let us finish this chapter with a few remarks and
open questions. An interesting problem would be to give sufficient conditions for
the limit of a path (or a sequence) in the moduli space to be at infinite distance.
Since this is always the case when the volume diverges to 0 or ∞, we need to fix
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the volume for this question to be interesting. In the case of twisted connected
sums for instance, the volume grows linearly with the length of the neck region
and therefore this represents an infinite-distance limit in the moduli space – even
though we could deduce from Proposition 4.8 that the energy of the obvious path
is bounded. However, if we normalise the volume it is no longer clear that the
distance is unbounded. The main challenge is that in order to find a lower bound
on the distance between two points in the moduli space, we need to control the
length of all paths connecting them, whereas the length of one particular path is
enough to give an upper bound. It is nevertheless interesting to remark that the
length of the volume-normalised neck-stretching path is indeed infinite.

Let us briefly sketch the argument. First, let us recall the notations of Section
2.2: we consider a twisted connected sum of two asymptotically cylindrical G2-
manifolds (Z1, φ1) and (Z2, φ2), resulting in a compact manifold MT endowed
with a glued G2-structure φT , which can be deformed to a nearby torsion-free G2-
structure φ̃T for T large enough, with ∥φ̃T −φT ∥Ck = O(e−δT ) as T → ∞ (for any
k ≥ 0 and small enough δ > 0). Moreover, [φ̃T ] = [φT ] ∈ H3(MT ), and with the
estimates of Proposition 2.16 we can well approximate the harmonic forms with
respect to gφ̃T

by the harmonic forms with respect to gφT
, which themselves can

be approximated by matching pairs of harmonic forms as in §3.4.1.
The matching G2-structures φi are asymptotic to Re(Ω) + dt∧ω, where (ω,Ω)

is a torsion-free SU(3)-structure on the common cross-section X of Zi. Moreover,
using the decomposition of the space of bounded harmonic forms described in
§3.4.1, there is a unique exact harmonic form ηi on Zi asymptotic to dt ∧ ω on
each Zi. By [95, Prop. 3.2], we have d

dt
[φT ] = 2δ([ω]) in H3(MT ), where [ω] ∈

H2(X) and the map δ : H2(X) → H3(MT ) comes from the Mayer-Vietoris exact
sequence associated with the gluing. Moreover, the class δ([ω]) ∈ H3(MT ) can
be represented by the closed form ηT/T ∈ Ω3(MT ), where ηT is the approximate
harmonic form obtained from the matching pair η1, η2 as in §3.4.1 (this can be
deduced from the proof of [95, Prop. 3.2]).

Let M be the moduli space of torsion-free G2-structures on M = MT . Since
the metric G splits a line in the volume direction (Lemma 4.1), the length of
the volume-normalised path induced by {φ̃T/Vol(φ̃T )3/7}T ∈[T0,∞) ⊂ M is equal
to
∫∞

T0

√
Gφ̃T

(π27( ˙̃φT ), π27( ˙̃φT ))dt. As T → ∞, the harmonic form π27( ˙̃φT ) can be
approximated by

νT = 2
T
ηT − 2

7T ⟨ηT , φT ⟩φT
φT = 2

T
(ηT − fφT )
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where f = ⟨ηT , φT ⟩φT
/7. In the neck region, f ∼ c is almost a constant, and hence

ηT ∼ 2
T

((1 − c)dt ∧ ω − cRe(Ω))

in the neck region, whence in this region

|ηT |2φT
∼

(1 − c)2|dt ∧ ω|2gX
+ c2| Re(Ω)|2gX

T 2 ∼ C

T 2

where C > 0 is a non-trivial constant. Since the length of the neck region and the
volume of φ̃T both grow linearly with T , it follows that

√
Gφ̃T

(π27( ˙̃φT ), π27( ˙̃φT )) = C ′

T
+ o(1/T )

as T → ∞, for some other non-trivial constant C ′ > 0. Hence we deduce:

Lemma 4.18. The volume-normalised path {φ̃T/Vol(φ̃T )3/7}T0,∞ ⊂ M has infi-
nite length with respect to the metric G . More precisely, the length of the path
grows logarithmically with T .

Remark 4.19. The fact that the speed of the path is proportional to 1
T

is consistent
with the fact that this path has bounded energy, even though the length diverges.

Remark 4.20. From the physics perspective, the logarithmic behaviour of the length
of the path would be in line with the conjectures mentioned in the introduction.
Indeed, if this path turned out to be close to distance-minimising, it would mean
that the parameter T is roughly some power of the exponential of the moduli space
distance, and by the spectral estimates of the previous chapter this means that
the eigenvalues of the Laplacian decay exponentially with the distance. This is
precisely what the swampland distance conjecture predicts.

Coming back to the general case, perhaps (if we assume that the volume is nor-
malised) one could argue that the diameter remains bounded on bounded subsets
of the moduli space; that is, finite-distance limits are noncollapsed. This probably
has more to do with Ricci-flatness than G2 holonomy, and might hold more gen-
erally for manifolds with holonomy SU(m) and Spin(7). Note that it is true for
hyperkähler K3 surfaces (holonomy SU(2)) and that this does not seem to contra-
dict the known results about finite-distance limits in Calabi–Yau moduli spaces4.
4Remark that the Calabi–Yau case seems to indicate that the converse statement is unlikely to
hold, that is, not all noncollapsed limits are at finite distance in the moduli space. Indeed, the
result of Wang [117] states that one-parameter degenerations of polarised projective Calabi–Yau
manifolds which occur at finite-distance correspond to varieties with canonical singularities,
whilst Donaldson–Sun proved that in general non-collapsed limits of projective Calabi–Yau
manifolds have log terminal singularities [38, §4].
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In the case of G2, all the degenerations of compact manifolds with G2-holonomy
which we proved to occur at finite distance in this chapter are noncollapsed. But
to the author’s knowledge there is no general statement of this sort5.

If this turned out to be true, one could even fantasize about studying the
completion of the moduli spaces (in the sense of the completion with respect to the
distance associated with G ). Indeed, if any bounded sequence in the moduli space
has bounded diameter, then (if the volume is normalised) Bishop–Gromov volume
monotonicity implies that the sequence is noncollapsed, and the theory developed
by Cheeger and Colding [23] implies that a subsequence must converge in the
Gromov–Hausdorff sense to a compact, singular space isometric to the completion
of an open Ricci-flat manifold. In fact the limit is a singular space with holonomy
contained in G2 (or whichever Ricci-flat holonomy group we started with) [25].
If the sequence we started with is in fact Cauchy, maybe one could hope that it
actually converges (and not just subconverges) in the Gromov–Hausdorff sense.
But even assuming that we can prove appropriate diameter bounds this would be
far from obvious because the moduli space distance is a priori much weaker than
the Gromov–Hausdorff distance.

5There is a statement along those lines in [7, Th. II], which concerns the case of Ricci-flat
4-manifolds (not necessarily hyperkähler) although the article claims that it would be straight-
forward to adapt it to all dimensions. Unfortunately, the proof appears to be erroneous (even
in dimension 4). At first I thought that there might be an easy fix for it and spent some time
trying to find one, but now I tend to believe that the argument cannot be saved.
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Chapter 5

A period mapping

The material presented in this chapter originally grew out of an attempt to better
understand the curvature of the metric G on G2-moduli spaces. I was interested
in knowing if it had any special properties or if there would be some universal
bounds, in relation with certain conjectures in Kähler geometry [121] and the
swampland distance conjectures in physics [98]. Since the metric G is Hessian,
these properties are determined by the derivatives of the potential F , which are
quite difficult to understand due to the high degree of nonlinearity of this function.
The third-order derivative is also of particular interest in physics: it determines
a symmetric cubic form called the Yukawa coupling, by analogy with the Yukawa
coupling of Calabi–Yau moduli spaces which plays an important role in mirror
symmetry [116].

Up to order 3, one may obtain compact formulas for the derivatives, but this
becomes substantially more difficult at higher order. At order 4, the author man-
aged to obtain a formula depending on the lower order derivatives together with
some ‘extra terms’ depending on the Green’s function of the Laplacian. Unfortu-
nately, we could not find a way to compute or estimate these terms and go further
in our understanding of the metric G using only local coordinate computations1,
except in some easy cases described in Chapter 6.

This difficulty motivated us to introduce a new perspective on the geome-
try of G2-moduli spaces. For this we drew inspiration from the notion of Weil–
Petersson geometry developed by Lu and Sun [90, 91] which axiomatises the ge-
ometric properties of Calabi–Yau moduli spaces, relying on the theory of period
maps introduced by Griffiths. Our starting observation is that by ‘twisting’ the
Hodge decomposition of a compact G2-manifold M , we can define a natural im-
mersion of the moduli space M into a homogeneous space D diffeomorphic to
1Although we are aware of ongoing work in this direction by Karigiannis and Loftin [74], whom
we thank for pointing it out.
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GL(b3(M))/({±1} × O(b3(M) − 1)), which satisfies properties analogous to Grif-
fiths’ transversality and naturally determines the metric G .

The chapter is organised as follows. In Section 5.1, we compute the derivatives
of the potential F and present a few geometric consequences of our formulas.
Then in Section 5.2 we introduce the period domain D and explain how to define
a natural immersion Φ : M → D. The geometric properties of this immersion and
its relation to the metric G are studied in Section 5.3, where we also prove that
Φ(M ) ⊂ D is a totally geodesic immersion if and only if the Yukawa coupling is
parallel with respect to the Levi-Civita connection of G . The material of these
first three sections are from the article [83] by the author. In Section 5.4, we make
some further comments (which do not appear in detail in the paper) and explain
how to relate this immersion to the more classical notion of G2-period map as a
Lagrangian immersion of M into H3(M) ⊕H4(M).

5.1 Higher derivatives of the potential

In this section as in the rest of the chapter, M7 will be a compact manifold ad-
mitting torsion-free G2-structures, and we assume that b1(M) = 0. Recall from
the previous chapter that the natural map M → H3(M) endows M with the
structure of an affine manifold, and if (u0, . . . , un) is a basis of H3(M) we have
associated local affine coordinates (x0, . . . , xn) on M , where n = b3(M) − 1. In
these coordinates, the Riemannian metric G is the Hessian of the potential func-
tion F (φ) = −3 log Vol(φ). We denote by Fa, Fab, etc. the partial derivatives of
F ; the expression of the first two derivatives was given in Proposition 4.2.

Remark 5.1. For later purpose, we note a couple of useful identities:

xkGak = xkFak = −Fa, and xkFk = −7.

They just follow from the fact that xk are by definition the coordinates of the
cohomology class [φ] ∈ H3(M) and

Gφ(φ, ηa) = 1
Vol(φ)

∫
⟨φ, ηa⟩φµφ = −Fa,

dφF (φ) = − 1
Vol(φ)

∫
φ ∧ Θ(φ) = −7.

In this section, we present a new derivation of the derivatives of the potential
F up to order 4, and deduce a few consequences for the geometry of the moduli
space. As a key part of our computations, we first we study in §5.1.1 the infinites-
imal deformations of harmonic forms along a family of Riemannian metrics. The
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derivations of the third and fourth derivatives of the potential are carried out in
§5.1.2. In §5.1.3 we relate them to the curvature of G .

5.1.1 Deformations of harmonic forms along a family of metrics. In this
part, we let (M7, g) be an oriented compact Riemannian 7-manifold and h ∈
End(TM) be a trace-free endomorphism, self-adjoint for the metric g. Moreover,
let {gt}t∈(−ϵ,ϵ) be a smooth family of metrics such that g0 = g and ∂gt

∂t

∣∣∣
t=0

= 2g(h, ·).
For all |t| < ϵ, we denote by ht the unique gt-self-adjoint endomorphism of TM
such that ∂gt

∂t
= 2gt(ht·, ·). In particular, h0 = h, but we do not require ht to be

trace-free with respect to gt for t ̸= 0. We also denote by ∗ the Hodge operator
associated with g, and by d∗ and ∆ = (dd∗ + d∗d) the corresponding operators;
similarly for t ∈ (−ϵ, ϵ) we denote by ∗t, d∗t and ∆t the operators associated with gt.
We want to understand the infinitesimal variations of the harmonic representative
of a fixed cohomology class along the path {gt}t∈(−ϵ,ϵ). We start by describing the
deformations of the operator d∗t .

Lemma 5.2. If η ∈ Ωk(M) is a k-form, we have

∂d∗tη

∂t

∣∣∣∣∣
t=0

= 2h · (d∗η) − 2d∗(h · η).

Proof. By definition, d∗tη = (−1)k ∗t d ∗t η. Using Lemma 1.3, we know that

∂∗t

∂t

∣∣∣∣∣
t=0

η = h · (∗η) − ∗(h · η) = 2h · (∗η) = −2 ∗ (h · η)

where the last two inequalities follow from Corollary 1.4, since h is trace-free and
self-adjoint for the metric g. The lemma follows.

Lemma 5.3. Let {ηt}t∈(−ϵ,ϵ) be a smooth family of k-forms on M , such that ηt is
harmonic for the metric gt for all |t| < ϵ, and let η = η0. Then we have:

∆ ∂ηt

∂t

∣∣∣∣∣
t=0

= 2dd∗(h · η).

Proof. The k-form ηt is closed for all t ∈ (−ϵ, ϵ), and thus if we differentiate the
equality

(d∗td+ dd∗t)ηt = 0

with respect to t we obtain

d
∂d∗t

∂t
ηt + ∆t

∂ηt

∂t
= 0.
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At t = 0, h0 = h is trace-free, η0 = η satisfies d∗η = 0, and thus the previous
lemma yields

∂d∗t

∂t

∣∣∣∣∣
t=0

η = 2h · (d∗η) − 2d∗(h · η) = −2d∗(h · η).

From this it follows that

−2dd∗(h · η) + ∆ ∂ηt

∂t

∣∣∣∣∣
t=0

= 0

which proves our claim.

In the next part we will need the following consequence of the previous lemmas:

Corollary 5.4. Let η be harmonic k-form with respect to the metric g. For t ∈
(−ϵ, ϵ), we denote by ηt the harmonic representative of [η] ∈ Hk(M) for the metric
gt and by νt the harmonic representative of the cohomology class [∗η] ∈ H7−k(M).
Then the decomposition of h · η into harmonic, exact and co-exact parts reads:

h · η = H (h · η) + 1
2
∂ηt

∂t

∣∣∣∣∣
t=0

− 1
2 ∗ ∂νt

∂t

∣∣∣∣∣
t=0

·

Proof. By the previous lemma, h · η satisfies the equation

∆ ∂ηt

∂t

∣∣∣∣∣
t=0

= 2dd∗(h · η).

Moreover, as ηt represents a fixed cohomology class, the k-forms ∂ηt

∂t
are exact.

Therefore, the exact part of h · η is 1
2

∂ηt

∂t

∣∣∣
t=0

.
The co-exact part of h · η can be deduced by symmetry. Indeed, as ∗2 =

(−1)k(7−k) = 1 on k-forms, the co-exact part of h · η is the Hodge dual of the exact
part of ∗(h · η). As h is trace-free, Corollary 1.4 implies that ∗(h · η) = −h · (∗η).
Using the above characterisation of the exact part, we deduce that the exact part
of h · (∗η) is precisely 1

2
∂νt

∂t

∣∣∣
t=0

. Thus the co-exact part of h · η is −1
2 ∗ ∂νt

∂t

∣∣∣
t=0

.

5.1.2 The third and fourth derivatives. In this part, M is a compact ori-
ented 7-manifold with b1(M) = 0 admitting torsion-free G2-structures, and we
aim to compute the third and fourth derivative of the potential F . Using a ba-
sis u0, . . . , un of H3(M), n = b3

27(M) = b3(M) − 1, we define affine coordinates
x = (x0, . . . , xn) on M . If φ is a torsion-free G2-structures on M , we denote
by ηa ∈ Ω3(M) the unique gφ-harmonic representative of the cohomology class
ua ∈ H3(M), and by ha ∈ C∞(End(TM)) the unique endomorphism orthogonal
to Ω2

14(M) such that ha · φ = ηa. Since b1(M) = 0, the 3-form ηa has no Ω3
7-

component, and thus ha is self-adjoint with respect to the metric gφ. Similarly,
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if {φx} is a local section of the moduli space, we denote by ηa,x ∈ Ω3(M) and by
ha,x ∈ C∞(End(TM)) the tensors associated with φx.

Various formulas for the third derivative of the potential have already appeared
in the literature [52, 51, 73, 85]. Here we give an independent derivation:

Proposition 5.5. Let φ be a torsion-free G2-structure on M . Then the third
derivative of the potential satisfies:

Fabc(φD) = − 2
Vol(φ)

∫
⟨hc · ηa, ηb⟩φµφ·

Proof. Let x = (x0, . . . , xn) be local affine coordinates on M , let x0 be the coor-
dinates of φ, and let {φx} be a local adapted section of the moduli space through
φ (see §4.1.2). Differentiating the identity

Fab(φxD) = 1
Vol(φx)

∫
⟨ηa,x, ηb,x⟩φxµφx

and using Lemma 4.5 from the previous chapter, we obtain at x = x0:

Fabc(φD) = 1
Vol(φ)

∫ ∂gφx

∂xc

∣∣∣∣∣
x=x0

(ηa, ηb)µφ

+ 1
Vol(φ)

∫
⟨ ∂ηa,x

∂xc

∣∣∣∣∣
x=x0

, ηb⟩φµφ + 1
Vol(φ)

∫
⟨ηa,

∂ηb,x

∂xc

∣∣∣∣∣
x=x0

⟩φµφ.

The 3-forms ∂ηa,x

∂xc and ∂ηb,x

∂xc are exact since ηa,x and ηb,x represent constant cohomol-
ogy classes, and therefore the second and third terms above vanish. On the other
hand, as the section {φx} is adapted at x = x0, we have ∂φx

∂xc

∣∣∣
x=x0

= ηc = hc · φ.
Thus we can compute the first term using Lemma 1.6 and the fact that hc is
self-adjoint with respect to gφ:

Fabc(φD) = − 1
Vol(φ)

∫
(⟨hc ·ηa, ηb⟩φ +⟨ηa, hc ·ηb⟩φ)µφ = − 2

Vol(φ)

∫
⟨hc ·ηa, ηb⟩φµφ

at x = x0.

We now proceed with the derivation of the fourth derivative. As a first step,
we prove a formula which depends on a particular choice of local section of the
moduli space:

Proposition 5.6. Let φ be a torsion-free G2-structure, let {φx} be a local adapted
section of the moduli space through φ and denote by x = x0 the coordinates of φD .
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Then the fourth derivative of the potential satisfies:

Fabcd(φD) = 2
Vol(φ)

∫
⟨hd · ηa − ∂ηa,x

∂xd

∣∣∣∣∣
x=x0

, hc · ηb⟩φµφ

+ 2
Vol(φ)

∫
⟨hd · ηb − ∂ηb,x

∂xd

∣∣∣∣∣
x=x0

, hc · ηa⟩φµφ

+ 2
Vol(φ)

∫
⟨hd · ηc − ∂ηc,x

∂xd

∣∣∣∣∣
x=x0

, ha · ηb⟩φµφ.

Proof. To lighten notations, we will keep the x-dependence implicit and write ηa

and ha instead of ηa,x and ha,x when this does not create any confusion. Also,
unless otherwise noted we differentiate at x = x0. By the previous proposition,
the third derivative of the potential can be written:

Fabc(φxD) = − 1
Vol(φx)

∫
⟨hc · ηa, ηb⟩φxµφx − 1

Vol(φx)

∫
⟨ηa, hc · ηb⟩φxµφx .

Differentiating with respect to xd at x = x0 and using Lemma 4.5 we obtain:

Fabcd(φD) = − 1
Vol(φ)

∫ ∂gφx

∂xd
(hc · ηa, ηb)µφ − 1

Vol(φ)

∫ ∂gφx

∂xd
(ηa, hc · ηb)µφ

− 1
Vol(φ)

∫
⟨hc · ηa,

∂ηb,x

∂xd
⟩φµφ − 1

Vol(φ)

∫
⟨∂ηa,x

∂xd
, hc · ηb⟩φµφ

− 1
Vol(φ)

∫
⟨hc · ∂ηa,x

∂xd
, ηb⟩φµφ − 1

Vol(φ)

∫
⟨ηa, hc · ∂ηb,x

∂xd
⟩φµφ

− 1
Vol(φ)

∫
⟨∂hc,x

∂xd
· ηa, ηb⟩φµφ − 1

Vol(φ)

∫
⟨ηa,

∂hc,x

∂xd
· ηb⟩φµφ·

(5.1)

Since the section {φx} is adapted, at x = x0 we have ∂φx

∂xd = ηd = hd · φ and by
Lemma 1.6 we have the identities:

∂gφx

∂xd
(hc · ηa, ηb) = −2⟨hc · ηa, hd · ηb⟩φ,

∂gφx

∂xd
(ηa, hc · ηb) = −2⟨hd · ηa, hc · ηb⟩φ.

Moreover, since the section hc of End(TM) is self-adjoint for the metric induced
by φ, the second and third lines in (5.1) are equal. These observations yield:

Fabcd(φD) = 2
Vol(φ)

∫
⟨hd · ηa − ∂ηa,x

∂xd
, hc · ηb⟩φµφ

+ 2
Vol(φ)

∫
⟨hd · ηb − ∂ηb,x

∂xd
, hc · ηa⟩φµφ

− 1
Vol(φ)

∫
⟨∂hc,x

∂xd
· ηa, ηb⟩φ + ⟨ηa,

∂hc,x

∂xd
· ηb⟩φµφ.

(5.2)
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It remains to show that the last line in (5.2) can be put in a form similar to the first
two lines. Decomposing ∂hc,x

∂xd into gφ-self-adjoint and gφ-anti-self-adjoint parts, we
can further write:

⟨∂hc,x

∂xd
· ηa, ηb⟩φ + ⟨ηa,

∂hc,x

∂xd
· ηb⟩φ = ⟨

∂hc,x

∂xd
+
(
∂hc,x

∂xd

)†φ

 · ηa, ηb⟩φ

= ⟨

∂hc,x

∂xd
+
(
∂hc,x

∂xd

)†φ

 · φ, ha · ηb⟩φ

where the second equality follows from Corollary 1.5 and
(

∂hc,x

∂xd

)†φ denotes the
adjoint of ∂hc,x

∂xd with respect to the metric gφ. Taking the self-adjoint part of a
section h of End(TM) corresponds to projecting h·φ onto the Ω3

1⊕Ω3
27-components,

and hence we obtain:

⟨∂hc,x

∂xd
· ηa, ηb⟩φ + ⟨ηa,

∂hc,x

∂xd
· ηb⟩φ = 2⟨∂hc,x

∂xd
· φ, π1⊕27(ha · ηb)⟩φ.

Differentiating the relation hc,x ·φx = ηc,x at x = x0 gives ∂hc,x

∂xd ·φx = ∂ηc,x

∂xd −hc · ηd

and thus:

2⟨∂hc,x

∂xd
· φ, π1⊕27(ha · ηb)⟩φ = −2⟨hc · ηd − ∂ηc,x

∂xd
, π1⊕27(ha · ηb)⟩φ

= −2⟨hd · ηc − ∂ηc,x

∂xd
, π1⊕27(ha · ηb)⟩φ

where the second equality also holds because this expression is invariant under
permutation of hc and hd. It remains to prove that the component π7(hd ·ηc − ∂ηc,x

∂xd )
vanishes. This component can be singled out by wedging with φ. On the one hand,
we have:

(hd · ηc) ∧ φ = hd · (ηc ∧ φ) − ηc ∧ (hd · φ) = −ηc ∧ ηd

as ηc ∧ φ = 0 since π7(ηc) = 0. On the other hand, at x = x0 we can write
∂ηc,x

∂xd
∧ φx = ∂

∂xd
(ηc,x ∧ φx) − ηc ∧ ∂φx

∂xd
= −ηc ∧ ηd (5.3)

since ∂φx

∂xd = ηd at x = x0. Therefore π7(hd · ηc − ∂ηc

∂xd ) = 0. Putting everything
together this implies that, at x = x0:

⟨∂hc,x

∂xd
· ηa, ηb⟩φ + ⟨ηa,

∂hc,x

∂xd
· ηb⟩φ = −2⟨hd · ηc − ∂ηc,x

∂xd
, ha · ηb⟩φ

which yields the claimed expression for Fabcd(φD).

The above expression for Fabcd is unsatisfactory, as it involves choosing an
adapted section at a point of M . In order to rewrite it in a more intrinsic way, we
need to decompose the 3-forms hd · ηa, hd · ηb and hd · ηc using the results of the
previous section:
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Lemma 5.7. With the notations of the previous proposition, the decomposition of
hd · ηc into harmonic, exact and co-exact parts reads:

hd · ηc = H (hd · ηc) + 1
2
∂ηc

∂xd

∣∣∣∣∣
x=x0

− 1
2 ∗φ

∂νc

∂xd

∣∣∣∣∣
x=x0

where νc,x is the harmonic representative of the cohomology class [∗φηc] ∈ H4(M)
for the metric induced by φx.

Proof. After applying a linear change of coordinates if necessary, we may assume
that at x = x0 the harmonic form η0 is proportional to φ and η1, . . . , ηn are
in H 3

27(M,φ). Thus if d = 0, hd ∈ C∞(End(TM)) is a constant multiple of the
identity, and therefore hd ·ηc is harmonic. Moreover, variations of φ in the direction
η0 correspond to scaling the G2-structure, and the harmonic representatives of a
fixed cohomology class are constant under scaling of the metric. Therefore the
proposition holds if d = 0. On the other hand, if d = 1, . . . , n then the result
follows from Corollary 5.4.

As a consequence of this lemma, we can write with the notations of Proposition
5.6

hd · ηc − ∂ηc,x

∂xd

∣∣∣∣∣
x=x0

= H (hd · ηc) +G∆((d∗d− dd∗)(hd · ηc))

where G∆ denotes the Green’s function of the Laplacian (acting on the orthogonal
component of the space of harmonic forms) associated with gφ. Moreover, we can
use Proposition 5.5 to decompose the harmonic 3-form H (hd · ηc) in the basis
η0, · · · , ηn as:

H (hd · ηc) = G kl

Vol(φ)

∫
⟨hd · ηc, ηk⟩φµφ · ηl = −1

2G klFcdkηl

and thus
2

Vol(φ)

∫
⟨H (hd · ηc),H (ha · ηb)⟩φµφ = 1

2G klFabkFcdl.

Therefore, we obtain a formula which does not depend on any choice of local
section:

Theorem 5.8. The fourth derivative of the potential is given by

Fabcd = 1
2G kl (FabkFcdl + FackFbdl + FadkFbcl) + Eabcd + Ecabd + Ecbad

where for any torsion-free G2-structure φ on M we have

Eabcd(φD) = 2
Vol(φ)

∫
⟨G∆((d∗d− dd∗)hd · ηc), ha · ηb⟩φµφ.
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Remark 5.9. Said in words, the integral
∫
⟨G∆((d∗d− dd∗)hd · ηc), ha · ηb⟩φµφ is the

L2-inner product of the co-exact parts of ha · ηb and hd · ηc minus the L2-inner
product of the exact parts of ha · ηb and hd · ηc. Hence the term Eabcd vanishes
exactly when these inner products are equal.

Remark 5.10. Since the operator G∆(d∗d−dd∗) is self-adjoint we have Eabcd = Edcba.
A slightly less obvious symmetry is the fact that Eabcd = Ebacd, which we can prove
in two ways. The first comes from the symmetry of the partial derivatives of F ,
which implies that Eabcd + Ecabd + Ecbad is fully symmetric in its indices. The sum
of the last two terms is symmetric under permutations of a and b, and hence the
first term Eabcd must be symmetric in the indices a and b. As a sanity check, we
can also recover this symmetry property from the expression given in Theorem
5.8. Indeed we can deduce from Lemma 1.2 the expression

Eabcd − Ebacd = 2
Vol(φ)

∫
⟨G∆((d∗d− dd∗)hd · ηc), [hb, ha] · φ⟩φµφ.

Now [hb, ha] is anti-self-adjoint for the metric gφ and hence the 3-form [ha, hb] is of
type Ω3

7. In particular, it is orthogonal to the space of harmonic 3-forms, and hence
Lemma 5.7 implies that if we choose a section φx of the moduli space adapted at
x = x0 we have

Eabcd(x0) − Ebacd(x0) = 2
Vol(φ)

∫
⟨hd · ηc − ∂ηc,x

∂xd

∣∣∣∣∣
x=x0

, [hb, ha] · φ⟩φµφ.

In the proof of Proposition 5.6, we showed that π7(hd · ηc − ∂ηc,x

∂xd

∣∣∣
x=x0

) = 0 which
means that the expression under the integral vanishes identically for type reasons.
Hence we recover the fact that Eabcd = Ebacd.

Besides the above symmetries (and the ones we can deduce from them), there is
no reason to think that Eabcd is fully symmetric in its indices; only the combination
of the terms Eabcd + Ecabd + Ecbad is.

5.1.3 Yukawa coupling and curvatures. In this part, we want to interpret the
expressions of the third and fourth derivatives of the potential in geometric terms
and relate them to the curvatures of the moduli spaces. As in the previous chapter,
let us denote by D the flat connection coming from the local diffeomorphism
π : M → H3(M) and ∇G the Levi-Civita of the metric G . Then there is a unique
matrix-valued 1-form γ on M , called the difference tensor of the Hessian structure
(D,G ), such that ∇G = D + γ. In local affine coordinates x = (x0, . . . , xn), the
difference tensor can be written as

γ = Γk
abdx

adxb ⊗ ∂

∂xk
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where Γk
ab are the Christoffel symbols of the metric G [106]. As the metric is the

Hessian of F in affine coordinates, the Christoffel symbols read:

Γk
ab = 1

2G klFabl. (5.4)

In particular, the difference tensor γ is dual to the symmetric cubic form

Ξ = 1
2Fabcdx

adxbdxc.

The cubic form Ξ is often called the Yukawa coupling of M [52, 73, 85]. The
covariant derivative of the Yukawa coupling is given by:

∇G
d Ξabc = ∂dΞabc − Γk

daΞkbc − Γk
dbΞakc − Γk

dcΞabk

= 1
2Fabcd − 1

4G kl (FabkFcdl + FackFbdl + FadkFbcl) .
(5.5)

Hence, Theorem 5.8 implies that:

∇G
d Ξabc = 1

2(Eabcd + Ecabd + Ecbad). (5.6)

Therefore, Eabcd + Ecabd + Ecbad = 0 at a point for any a, b, c, d if and only if
the covariant derivative (with respect to the Levi-Civita connection of G ) of the
Yukawa coupling Ξ, or equivalently of the difference tensor γ, vanishes at this
point. For later use, we gather a few properties of the Yukawa coupling and its
covariant derivative:

Lemma 5.11. The Yukawa coupling satisfies the following properties:

(i) Under the identification M ≃ R× M1 of 4.1.1, Ξ = −dt⊗ G + Ξ1 where Ξ1

is the restriction of Ξ to M1.

(ii) In local affine coordinates, xkFabk = −2Gab.

(iii) ∇G Ξ is a fully symmetric quartic form on TM .

(iv) In local affine coordinates, xk∇G
a Ξbck = 0.

Proof. Properties (i) and (ii) are essentially equivalent since Fabc = 2Ξabc. More-
over (ii) can be seen from the observation that xk are the coordinates of the
cohomology class [φ] ∈ H3(M), and thus

xkFabk = − 2
Vol(φ)

∫
⟨ha · ηb, φ⟩φµφ = − 2

Vol(φ)

∫
⟨ηa, ηb⟩φµφ = −2Gab

using the symmetry of ha and the fact that ha · φ = ηa by definition.
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For point (iii), the symmetry of ∇G Ξ follows from the symmetry of the partial
derivatives of F and (5.5). Finally, because point (iv) will be a key argument in
the next section (in the proof of Theorem 5.22), we shall give it two proofs.

The first proof follows from the observation that

xkEkbcd = xkEakcd = xkEabkd = xkEabck = 0 (5.7)

for any a, b, c, d. Indeed, from the expression given in Theorem 5.8, we have

xkEkbcd =
∫

⟨G∆((d∗d− dd∗)hd · ηc), (xkhk · ηb)⟩φµφ.

Notice that xkhk is a self-adjoint endomorphism of TM for the metric gφ, and
moreover xkhk · φ = xkηk = φ. It follows that xkhk = 1

3 Id. Hence xkhk · ηb =
1
3 Id ·ηb = ηb is harmonic, whence it is L2-orthogonal to G∆((d∗d− dd∗)hd · ηc) and
therefore xkEkbcd = 0. The other identities of (5.7) are proved in the same way,
since xkha · ηk = ha · φ = ηa, xkhd · ηk = ηd and xkhk · ηc = ηc are all harmonic
forms. Since a, b, c, d are arbitrary point (iv) now follows from (5.6).

We can also give point (iv) a second proof which does not rely on the particular
expression of the terms Eabcd given in Theorem 5.8 but only on the properties of the
potential F . The idea is to differentiate the expression of point (ii) with respect
to the variable xc, which yields the identity xkFabck + Fabc = −2Fabc, that is:

xkFabck = −3Fabc. (5.8)

On the other hand, using (5.5) we have

xk∇G
a Ξbck = 1

2x
kFabck − 1

4G rs
(
Fabr · xkFcks + Facr · xkFbks + xkFakr · Fbcs

)
and using point (ii) again we see that

G rsxkFcks = −2G rsGcs = −2δr
c , G rsxkFbks = −2δr

b , G rsxkFakr = −2δr
a.

Substituting this into the previous expression, we obtain

xk∇G
a Ξbck = 1

2(xkFabck + 3Fabc) = 0

because of (5.8).

It is interesting to relate the previous observations to the curvature of G . By
convention, we define the Riemann curvature tensor of G as

R

(
∂

∂xc
,
∂

∂xd

)
∂

∂xb
= Ra

bcd
∂

∂xa
= ∇G

∂c
∇G

∂d

∂

∂xb
− ∇G

∂d
∇G

∂c

∂

∂xb
·
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Lowering the first index, we also denote

Rabcd = GakR
k

bcd.

For Hessian metrics, the Riemann curvature tensor has a particularly simple ex-
pression [106, Prop. 2.3]:

Rabcd = 1
4G kl(FadkFbcl − FackFbdl) = G klΞadkΞbcl − G klΞackΞbdl. (5.9)

Since the Yukawa coupling determines the curvature, we deduce the following:

Proposition 5.12. If Eabcd + Ecabd + Ecbad = 0 for any 0 ≤ a, b, c, d ≤ n at a point
of the moduli space, then the covariant derivative of R vanishes at this point. In
particular, if Eabcd + Ecabd + Ecbad vanishes identically on the moduli space, then
(M ,G ) is locally symmetric.

In the next chapter, we will see that this condition is satisfied in certain simple
cases, e.g. when M = T 7/Γ or M = (T 3 × K3)/Γ. Hence for these very simple
examples the moduli spaces are locally symmetric, a fact which can be easily
proved independently and constitutes a good sanity check for the results which we
derived in this section.

Beyond these cases, there is no reason to think that the Yukawa coupling
will be a parallel tensor, because the constraints it imposes on G are too strong.
Therefore, much of the difficulty in further analysing the geometric properties of
the moduli spaces lies in the fact that the terms Eabcd cannot be computed more
explicitly in local coordinates. In the next sections of this chapter, we will propose
a more geometric interpretation for the presence of these terms, and in §5.3.3 we
prove a stronger version of Proposition 5.12 which shows that if they vanish then
the sectional curvature of G is nonpositive.

5.2 Period domains

In the remainder of this chapter, we shall introduce an immersion Φ of the moduli
space M into the homogeneous space GL(n+1)/({±1}×O(n)), study its properties
and relate it to the metric G . The idea is inspired by the period map introduced
by Griffiths on Calabi–Yau moduli spaces [49, 50], and the related notion of Weil–
Petersson geometry of Lu and Sun [90].

By means of motivation, let us recall a few facts. If Y is a compact Calabi–Yau
threefold, the cohomology group H3(Y ;C) admits a Hodge decomposition

H3(Y ;C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3.
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The cup-product induces a symplectic structure Q on H3(Y ;C) and the Hodge
decomposition is subject to the following conditions:

(A) Hp,3−p = H3−p,p, for all p = 0, 1, 2, 3.

(B) iQ(Hp,3−p, Hq,3−q) = 0 if p ̸= q, and (−1)p+1iQ(Hp,3−p, Hp,3−p) > 0 for all p.

(C) dimH3,0 = 1.

By considering the Hodge filtration F p = H3,0 ⊕· · ·⊕H3−p,p, it can be shown that
the domain parametrising such decompositions (called Hodge structures of weight
(1, h2,1)) is a complex homogeneous space diffeomorphic to Sp(Q)/(U(1) × U(n)),
where Sp(Q) is the group of real endomorphisms of H preserving the symplectic
form Q and n = h2,1(Y ). Griffiths proved that the Hodge filtration varies holomor-
phically along an analytic deformation of the complex structure of Y , and that
these variations satisfy the transversality condition dF p ⊂ F p−1 [49, 50]. This
condition in particular implies that the Weil–Peterson metric can be seen as the
pull-back of a homogeneous indefinite hermitian form defined on the period domain
[108, 112, 90].

The goal of the present section is to explain how to ‘twist’ the Hodge decom-
position of a G2-manifold (M,φ) in order to obtain a flag in H3(M) ⊕ H4(M)
satisfying analogous axioms, and to describe the geometry of the corresponding
‘period domains’.

5.2.1 Some observations on the Hodge decomposition. Let (M,φ) be a
compact G2-manifold, with the usual assumption b1(M) = 0. For simplicity, we
denote H3 = H3(M), H4 = H4(M) and H = H3 ⊕ H4, and n = b3

27(M) =
b3(M)−1. We can define an involution ι = IdH3 − IdH4 on H. As the cup-product
identifies H4 with the dual space of H3, H is endowed with a natural symplectic
form Q. Explicitly, if η, η′ are closed 3-forms and ν, ν ′ closed 4-forms we have

Q([η] + [ν], [η′] + [ν ′]) =
∫

M
η ∧ ν ′ −

∫
M
η′ ∧ ν.

Let us consider the decomposition H = H(3)
φ ⊕H(2)

φ ⊕H(1)
φ ⊕H(0)

φ defined by

H(3)
φ = {[η] + [∗φη], η ∈ H 3

1 (M,φ)},
H(2)

φ = {[η] − [∗φη], η ∈ H 3
27(M,φ)},

H(1)
φ = {[η] + [∗φη], η ∈ H 3

27(M,φ)}, and
H(0)

φ = {[η] − [∗φη], η ∈ H 3
1 (M,φ)}.

(5.10)

It satisfies the following properties, analogous to (A), (B) and (C) above:
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(1) H(3−p)
φ = ι(H(p)

φ ) for p = 0, . . . , 3.

(2) Q(ι(H(p)
φ ), H(q)

φ ) = 0 if p ̸= q, and (−1)p+1Q(ι(H(p)
φ ), H(p)

φ ) > 0, for any
0 ≤ p, q ≤ 3; that is, (−1)p+1Q(ι(w), w) > 0 for any w ∈ H(p)\{0}.

(3) dimH(3)
φ = 1 and dimH(2)

φ = n.

The first and third properties are clear, and the second one follows from the fact
that if w = [η] + (−1)p+1[∗φη] ∈ H(p)

φ and w′ = [η′] + (−1)q+1[∗φη
′] ∈ H(q)

φ then

Q(ι(w), w′) = ((−1)p+1 + (−1)q+1)
∫

⟨η, η′⟩φµφ.

Let us denote by D ⊂ P(H)×Gr(n,H)×Gr(n,H)×P(H) the set of decompositions
H = (H(3), H(2), H(1), H(0)) of H satisfying the above properties, where Gr(n,H)
is the Grassmannian of n-planes in H. The subgroup of GL(H) of automorphisms
fixing (Q, ι) naturally acts on D. This group can be identified with GL(H3) ≃
GL(n+1). Explicitly, if we fix bases (u0, . . . , un) of H3 and (v0, . . . , vn) of H4 such
that

Q(ui, vj) = δij, ∀0 ≤ i, j ≤ n (5.11)

then any matrix A ∈ GL(n+ 1) acts on H via

A(uj) =
N∑

i=0
Aijui, A(vj) =

N∑
i=0

(A−1)jivi. (5.12)

This action has the following properties:

Lemma 5.13. There is an equivariant diffeomorphism D → P(H3) × S2
+(H3)∗.

In particular the action of GL(H3) on D is transitive, and D is diffeomorphic to
the homogeneous space GL(n+ 1)/({±1} × O(n)).

Proof. If H ∈ D, we can define a line ℓH ∈ P(H3) by

ℓH = {w + ι(w), w ∈ H(3)}.

There is also a quadratic form qH on H3 defined as

qH(u) = 2Q(π(0)
H u, π

(3)
H u) − 2Q(π(1)

H u, π
(2)
H u), ∀u ∈ H3,

where π(p)
H denotes the projection of H onto H(p) in the decomposition H = H(3) ⊕

H(2) ⊕H(1) ⊕H(0). Properties (1) and (2) imply that qH is positive definite on H3,
and thus qH ∈ S2

+(H3)∗. This way we have defined a map D → P(H3) ×S2
+(H3)∗,

and it is clear that it is equivariant under the action of GL(H3). This map is
invertible, and its inverse can be constructed as follows. Let (ℓ, q) ∈ P(H3) ×
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S2
+(H3)∗, and let (u0, . . . , un) be an orthonormal basis of H3 such that u0 spans ℓ.

Then there exists a unique basis (v0, . . . , vn) of H4 such that Q(ui, vj) = δij, and
we can define

H
(3)
(ℓ,q) = span{u0 + v0}, H

(2)
(ℓ,q) = span{uj − vj, 1 ≤ j ≤ n}

as well as H(p)
(ℓ,q) = ι(H(3−p)

(ℓ,q) ) for p = 0, 1. It is easy to see that this decomposition
H(ℓ,q) is an element of D, and that the map P(H3) × S2

+(H3)∗ defined in this way
is an inverse for the map H 7→ (ℓH, qH). The rest of the lemma follows.

Remark 5.14. Under the diffeomorphism D ≃ P(H3) × S2
+(H3)∗, we can easily see

that for any torsion-free G2-structure φ on M we have ℓ(Hφ) = H3
1 (M,φ), and

q(Hφ) is the inner product on H3 induced by the L2-inner product on H 3(M, gφ).

Throughout this section, it will be convenient to adopt the following definition.
If H ∈ D, a basis (u0, . . . , un, v0, . . . , vn) of H will be called a standard basis for H
if it satisfies the following properties:

(i) (u0, . . . , un) is a basis of H3, (v0, . . . , vn) is a basis of H4, and relations (5.11)
are satisfied.

(ii) The basis (u0, . . . , un) is orthonormal for the inner product qH.

(iii) H(3) = span{u0 + v0} and H(2) = span{ui − vi, 1 ≤ i ≤ n}.

Standard bases always exist, and are uniquely determined by a qH-orthonormal
basis (u0, . . . , uN) of H3 such that u0 ∈ ℓH.

5.2.2 The horizontal and transverse distributions. Let us denote by GH ⊂
GL(H3) the stabiliser of an element H ∈ D, and by gH ⊂ gl(H3) its Lie algebra.
In a standard basis (u0, . . . , un, v0, . . . , vn) of H associated with H, gH corresponds
to the space of matrices

gH = {(aij)0≤i,j≤n, a0i = ai0 = 0 ∀0 ≤ i ≤ n, aij = −aij ∀1 ≤ i, j ≤ n}.

The quadratic form qH induces an inner product on gl(H3): if a ∈ gl(H3) corre-
sponds to the matrix (aij)0≤i,j≤n in the basis (u0, . . . , un), we have:

|a|2H =
n∑

i,j=0
a2

ij.

We denote by pH the orthogonal complement of gH for this inner product. That
is, in a standard basis,

pH = {(aij)0≤i,j≤n, aij = aij ∀1 ≤ i, j ≤ n}.
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The tangent space THD can be identified with pH, which is endowed with the
inner product induced by qH. This defines a Riemannian metric gD on D, ho-
mogeneous with respect to GL(H3). Let us denote by T vD the distribution tan-
gent to the fibres of q : D → S2

+(H3)∗ and call it the vertical distribution of
D. The horizontal distribution of D is defined as the orthogonal complement of
the vertical distribution, and will be denoted by T hD. If H ∈ D and THD is
identified with pH ⊂ gl(H3), then the splitting THD = T v

HD ⊕ T h
HD corresponds

to the decomposition pH = vH ⊕ hH, where hH is the space of endomorphisms
of H3 that are self-adjoint with respect to the inner product qH and vH its or-
thogonal complement in pH. In particular, the map q : D → S2

+(H3)∗ is a Rie-
mannian fibration for the natural symmetric metric gS2

+
of S2

+(H3)∗. Recall that
this metric can be defined as follows: if q ∈ S2

+(H3)∗ is an inner product and
q̇ ∈ S2(H3)∗ ≃ TqS

2
+(H3)∗, there is a unique q-self-adjoint endomorphism a of

H3 such that q̇ = d
dt

∣∣∣
t=0

(eta)∗q = q(a·, ·) + q(·, a·) = 2q(a·, ·), and then we define
|q̇|2q = tr(a2) = ∑

a2
ij in a q-orthonormal basis.

Written in a standard basis, the horizontal and vertical spaces are given by

vH = {(aij)0≤i,j≤n, a0i = −ai0 ∀0 ≤ i ≤ n, aij = 0 ∀1 ≤ i, j ≤ n},

hH = {(aij)0≤i,j≤n, aij = aij ∀0 ≤ i, j ≤ n}.

The horizontal distribution admits a further equivariant splitting. By the previous
lemma, H determines a line ℓH ∈ P(H3) which is fixed byGH, and therefore there is
a 1-dimensional subspace lH ⊂ hH consisting of those self-adjoint endomorphisms
that send ℓH to itself and act trivially on its orthogonal complement. We denote
by tH the orthogonal complement of lH in hH and by T t

HD the corresponding
subspace of THD. This defines an equivariant distribution T tD ⊂ TD, which we
call the transverse distribution of D. Again, in a standard basis we have

lH = {(aij)0≤i,j≤n, aij = 0 if (i, j) ̸= (0, 0)},
tH = {(aij)0≤i,j≤n, aij = aij ∀0 ≤ i, j ≤ N, a00 = 0}.

Another convenient description of the horizontal and transverse distributions
can be given by introducing the filtration F (3) ⊂ F (2) ⊂ F (1) ⊂ F (0) = H associ-
ated with H ∈ D:

F (p) = H(3) ⊕ · · · ⊕H(p).

Clearly this filtration determines H, and therefore this defines an equivariant em-
bedding of D in a manifold of flags in H. Via this embedding, any tangent vec-
tor ξ ∈ THD can be represented by a triple of linear maps F (p) → H/F (p) for
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p = 1, 2, 3. Since F (p) ⊂ F (p−1) and H(p−1) ⊕ · · · ⊕ H(0) is a complement of F (p),
we can in fact represent ξ by (ϕ(3)

ξ , ϕ
(2)
ξ , ϕ

(1)
ξ ) where

ϕ
(p)
ξ : H(p) → H(p−1) ⊕ · · · ⊕H(0).

Lemma 5.15. Let H ∈ D and ξ ∈ THD be represented by the triple of linear maps
(ϕ(3)

ξ , ϕ
(2)
ξ , ϕ

(1)
ξ ). Then ξ is a horizontal vector if and only if

ϕ
(3)
ξ (H(3)) ⊆ H(2) ⊕H(0)

and in this case
ϕ

(2)
ξ (H(2)) ⊆ H(1).

Moreover, ξ is transverse if and only if

ϕ
(3)
ξ (H(3)) ⊆ H(2).

In particular if ξ is transverse then ϕ
(p)
ξ ∈ Hom(H(p), H(p−1)).

Proof. Let (u0, . . . , un, v0, . . . , vn) be a standard basis of H associated with H. In
this basis, D ≃ GL(n + 1)/({±1} × O(n)) and the vector ξ ∈ THD is uniquely
represented by a matrix aξ = (aij)0≤i,j≤n satisfying

aji = aij, ∀1 ≤ i, j ≤ n.

Now aξ acts on H3 by a(uj) = aijui and on H4 by a(vj) = −ajivi, and therefore
the linear map ϕ

(3)
ξ is characterised by:

ϕ
(3)
ξ (u0 + v0) =

n∑
i=0

ai0ui − a0ivi

= a00(u0 − v0) +
n∑

i=1

{
ai0 + a0i

2 (ui − vi) + ai0 − a0i

2 (ui + vi)
}
,

where the first term belongs to H(0), the second term to H(2) and the third to H(1).
Hence ϕ(3)

ξ maps into H(2) ⊕H(0) if and only if a0i = ai0, that is if aξ is symmetric.
This is exactly the condition for ξ to define a horizontal vector in THD. Moreover
ϕ

(3)
ξ maps into H(2) if and only if aξ is symmetric and a00 = 0, that is, if aξ ∈ tH.

Now assume that ξ is a horizontal vector, that is, aξ is symmetric. The only
nontrivial inclusion left to check is ϕ(2)

ξ (H(2)) ⊂ H(1). On H(2), aξ acts by

aξ(uj − vj) =
n∑

i=0
aijui + ajivi = a0j(u0 + v0) +

n∑
i=1

aij(ui + vi)

where the first term a0j(u0 +v0) ∈ H(3) and the second term is an element of H(1).
Only the projection of aξ(uj − vj) onto H(1) ⊕H(0) contributes to ϕ(2)

ξ (uj − vj) and
therefore ϕ(2)

ξ (H(2)) ⊆ H(1).
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Another useful description uses the identification D ≃ P(H3) × S2
+(H3)∗. Let

H ∈ D correspond to (ℓ, q) ∈ P(H3) × S2
+(H3)∗. Then any tangent vector is

characterised by a couple (ϕ, κ) where ϕ : ℓ → ℓ⊥q is a linear map and κ ∈ S2(H3)∗.
Here ℓ⊥q denotes the orthogonal complement of ℓ in H3 for the inner product
induced by q. The conditions of horizontality and transversality are:

Lemma 5.16. The couple (ϕ, κ) defines a horizontal vector in THD if and only if

κ(u, u′) + 2q(ϕ(u), u′) = 0, ∀u ∈ ℓ, ∀u′ ∈ ℓ⊥q .

Moreover it defines a transverse vector if and only if the above holds for all u ∈ ℓ

and u′ ∈ H3, that is, if κ(u, u) = 0 for u ∈ ℓ.

Proof. Let (u0, . . . , un) be a q-orthonormal basis of H3 such that u ∈ ℓ, and let
a = (aij)0≤i,j≤n representing the tangent vector characterised by (ϕ, κ) in this basis.
That is, a satisfies aij = aji for 1 ≤ i, j ≤ n, and

κ = −q(a·, ·) − q(·, a·) and ϕ(u0) ≡ a · u0 mod ℓ.

For 1 ≤ j ≤ n we have:

κ(u0, uj) + 2q(ϕ(u0), uj) = −q(a · u0, uj) − q(u0, a · uj) + 2q(a · u0, uj)
= aj0 − a0j

and thus its vanishing is equivalent to aij = aji for all 0 ≤ i, j ≤ n, that is, a
defines a horizontal vector. Moreover,

κ(u0, u0) = −2q(a · u0, u0) = −2a00

and hence a defines a transverse vector if and only if it defines a horizontal vector
and the above vanishes.

5.3 Properties of the period mapping

As the decomposition H = H(3)
φ ⊕H(2)

φ ⊕H(1)
φ ⊕H(0)

φ associated with a torsion-free
G2-structure φ only depends on the class of φ modulo D , there is a well-defined
map Φ : M → D. Under the identification of D with P(H3) ×S2

+(H3)∗, φD ∈ M

is mapped to (H3
1 (M,φ), e−F (φ)/3Gφ) (see Remark 5.14) and thus we see that Φ

is a smooth, even real-analytic map (by Theorem 4.6). In this section we study
its local properties and relate it more intrinsically to the metric G . In §5.3.1, we
show that it satisfies a property analogous to Griffith’s transversality, in §5.3.2 we
prove that G is induced by a homogeneous quadratic form on D and in §5.3.3 we
prove that Φ is a totally geodesic immersion if and only if the Yukawa coupling is
a parallel tensor on M .
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5.3.1 Infinitesimal variations. The properties of the tangent map of Φ are
summarised in the following theorem:

Theorem 5.17. The map Φ : M → D is a horizontal immersion, and the restric-
tion of Φ to M1 is transverse.

Moreover, if φ ∈ M1 and η ∈ H 3
27(M,φ) ≃ TφDM1, then TφDΦ(η) is deter-

mined by the triple of linear maps ϕ(p)
η ∈ Hom(H(p)

φ , H(p−1)
φ ), p = 1, 2, 3, defined

as follows. Let h be the unique trace-free self-adjoint endomorphism such that
h · φ = η and let η′ ∈ H 3

27(M,φ). Then we have:

(i) ϕ(3)
η ([φ] + [Θ(φ)]) = [η] − [∗φη],

(ii) ϕ(2)
η ([η′] − [∗η′]) = [π27H (h · η′)] + [∗φπ27H (h · η′))],

(iii) ϕ(1)
η ([η′] + [∗η′]) = 1

7
∫
⟨η′, η⟩φµφ · ([φ] − [Θ(φ)]).

Proof. Let {φt}t∈(−ϵ,ϵ) be a family of torsion-free G2-structures on M such that
φ0 = φ and assume that ∂φt

∂t

∣∣∣
t=0

= η is a harmonic 3-form. Let Ht = Φ(φt) and
(ϕ(3)

η , ϕ(2)
η , ϕ(1)

η ) be the triple of linear map representing TφDΦ(η). For all t ∈ (−ϵ, ϵ),
H

(3)
t ⊂ H is spanned by [φt] + [Θ(φt)]. Differentiating at t = 0 we have

∂φt

∂t

∣∣∣∣∣
t=0

+ ∂Θ(φt)
∂t

∣∣∣∣∣
t=0

= η + 4
3 ∗φ π1(η) − ∗φπ27(η)

= π1(η) + 4
3 ∗φ π1(η) + π27(η) − ∗φπ27(η).

(5.13)

Since η is harmonic with respect to gφ, the first two terms term represent an
element of H(3)

φ ⊕ H(0)
φ , and the last two terms an element of H(2)

φ , and hence
ϕ(3)

η (H(3)
φ ) ⊆ H(2)

φ ⊕ H(0)
φ . If moreover all φt have unit volume then π1(η) = 0,

and thus ϕ(3)
η (H(3)

φ ) ⊂ H(2)
φ . Hence the first part of the theorem follows from the

previous lemma.
Let us now assume that Vol(φt) = 1 for all t and let us compute the differential

of Φ. The expression for ϕ(3)
η follows from (5.13) since the first two terms vanish.

Now let η1, . . . , ηn be a basis of H 3
27(M,φ), and denote by ηa,t the element of

H 3(M,φt) such that [ηa,t] = [ηa] ∈ H3(M). For small enough t, the differential
forms η′

a,t defined by

η′
a,t = ηa,t − 1

7

∫
(ηa,t ∧ Θ(φt)) · φt

form a basis of H 3
27(M,φt). Thus H(2)

t is spanned by the cohomology classes
[η′

a,t] − [∗tη
′
a,t], a = 1, . . . , n, for small t. At t = 0, each ηa is orthogonal to φ and

thus by Lemma 1.6 we obtain
∂η′

a,t

∂t

∣∣∣∣∣
t=0

= ∂ηa,t

∂t

∣∣∣∣∣
t=0

+
(1

7

∫
⟨ηa, η⟩φµφ

)
· φ
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where η = ∂φt

∂t

∣∣∣
t=0

. In particular since ∂ηa,t

∂t

∣∣∣
t=0

is exact the harmonic part of
∂η′

a,t

∂t

∣∣∣∣
t=0

is (1
7
∫
⟨ηa, η⟩φµφ)φ. On the other hand, if we write η = h · φ where h is

traceless and self-adjoint, then by Lemma 1.3 and Corollary 1.4 we have

∂ ∗t η
′
a,t

∂t

∣∣∣∣∣
t=0

= h · ∗φηa − ∗φ(h · ηa) + ∗φ

∂η′
a,t

∂t

∣∣∣∣∣
t=0

and since h anticommutes with ∗φ, the harmonic part of ∂∗tη′
a,t

∂t

∣∣∣∣
t=0

is

−2 ∗φ H (h · ηa) +
(1

7

∫
⟨ηa, η⟩φµφ

)
· Θ(φ).

Moreover, we have

π1H (h · ηa) =
(1

7

∫
⟨h · η, φ⟩φµφ

)
· φ =

(1
7

∫
⟨ηa, η⟩φµφ

)
· φ

and thus gathering all the results we obtain

∂([η′
a,t] − [∗tη

′
a,t])

∂t

∣∣∣∣∣
t=0

= 2[∗φπ27(h · ηa)] +
(1

7

∫
⟨η, ηa⟩φµφ

)
· ([φ] + [Θ(φ)])

≡ [π27H (h · ηa)] + [∗φπ27H (h · ηa)] mod F
(2)
t .

This yields the claimed expression for ϕ(2)
η . By a mere change of sign, the expression

for ϕ(1)
η follows from the fact that

∂([η′
a,t] − [∗tη

′
a,t])

∂t

∣∣∣∣∣
t=0

≡
(1

7

∫
⟨η, ηa⟩φµφ

)
· ([φ] − [Θ(φ)]) mod F

(1)
t .

This finishes the proof of the theorem.

5.3.2 Riemannian aspects. The map Φ : M → D is not a local isometry
for the metrics G on M and gD on D. Nonetheless, it naturally determines the
metric G . Since G = 7dt2 + G1 under the splitting M ≃ R × M1, it is enough
to prove that the restriction of Φ to M1 determines the metric G1. Because the
map Φ : M1 → D is transverse, it turns out that G1 can be seen as the pull-
back of an indefinite quadratic form hD on the transverse distribution. To define
hD, let H ∈ D, and consider a transverse tangent vector ξ ∈ T t

HD. By Lemma
5.15, it can be represented by a triple of linear maps (ϕ(3)

ξ , ϕ
(2)
ξ , ϕ

(1)
ξ ) where ϕ(p)

ξ ∈
Hom(H(p), H(p−1)). If w ∈ H(3)\{0}, define

hD(ξ, ξ) = −
Q(ι(ϕ(3)

ξ (w)), ϕ(3)
ξ (w))

Q(ι(w), w)

This does not depend on the choice of w, and since Q(ι(H(2)), H(2)) < 0 this defines
a nonnegative, equivariant quadratic form on the transverse distribution T tD.
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Proposition 5.18. G1 = 7Φ∗hD.

Proof. Let φ be a unit volume torsion-free G2-structure on M and take w =
[φ] + [Θ(φ)] ∈ H(3)

φ , so that

Q(ι(w), w) = Q([φ] − [Θ(φ)], [φ] + [Θ(φ)]) = 14.

Let η ∈ H 3
27(M,φ), identified with an element of TφDM1, and let (ϕ(3)

η , ϕ(2)
η , ϕ(1)

η )
be the triple of linear maps representing TΦ(η) ∈ THφD. By Theorem 5.17 we
have

Q(ι(ϕ(3)
η (w)), ϕ(3)

η (w)) = Q([η] + [∗φη], [η] − [∗φη]) = −2
∫

|η|2φµφ.

Thus Φ∗hD(η, η) = G1(η, η)/7.

In the same way, Φ determines the Yukawa coupling Ξ on M ; by Lemma 5.11,
Ξ = −dt ⊗ G + Ξ1 and thus we just need to show that Ξ1 is the pull-back of an
equivariant cubic form defined on the transverse distribution in D. If H ∈ D and
ξ, ξ′, ξ′′ ∈ T t

HD, each transverse vector is represented by a triple of linear maps
(ϕ(3)

ξ , ϕ
(2)
ξ , ϕ

(1)
ξ ) and similarly for ξ′ and ξ′′. Since each ϕ

(p)
ξ maps H(p) to H(p−1),

the composition ϕ
(1)
ξ ◦ ϕ(2)

ξ′ ◦ ϕ(3)
ξ′′ defines a linear map from H(3) to H(0). Both are

1-dimensional spaces, and thus there exists a unique ΞD(ξ, ξ′, ξ′′) such that

ϕ
(1)
ξ ◦ ϕ(2)

ξ′ ◦ ϕ(3)
ξ′′ (w) = −ΞD(ξ, ξ′, ξ′′) · ι(w), ∀w ∈ H(3).

This defines equivariantly a cubic form ΞD on T tD.

Proposition 5.19. Ξ1 = 7Φ∗ΞD.

Proof. Let φ be a unit-volume torsion-free G2-structure on M and η, η′, η′′ ∈
H 3

27(M,φ). Theorem 5.17 yields:

ϕ(1)
η ◦ ϕ(2)

η′ ◦ ϕ(3)
η′′ ([φ] + [Θ(φ)]) = 1

7

∫
⟨π27H (h′ · η′′), η⟩φµφ · ([φ] − [Θ(φ)])

= 1
7

∫
⟨h′ · η′′, η⟩φµφ · ([φ] − [Θ(φ)])

which proves the proposition.

Remark 5.20. This is similar to the way the Yukawa coupling is defined on the
moduli spaces of Calabi–Yau threefolds, as described by Bryant and Griffiths [18].

Remark 5.21. The way we defined it, ΞD is actually not a symmetric cubic form
on T tD. However, we will in Section 5.4 consider the transversality condition as
an exterior differential system on D, and show that the restriction of ΞD to any
integral element is fully symmetric (see Remark 5.28). Hence ΞD will be symmetric
along any integral submanifold of the transverse distribution.
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5.3.3 A condition for Φ to be totally geodesic. In this part, we relate the
geometry of the immersion Φ : M → D with the computations of the Section
5.1 and refine the observations of §5.1.3. Our main result is that the covariant
derivative of the Yukawa coupling Ξ, or equivalently the extra term Eabcd + Ecabd +
Ecbad, essentially characterises the second fundamental form of Φ(M ) inside the
domain D. More precisely, we have

Theorem 5.22. The Yukawa coupling is a parallel tensor if and only if Φ : M →
D is a totally geodesic immersion. Moreover, if these conditions are satisfied
then the Levi-Civita connections of G and Φ∗gD coincide and (M ,G ) is a locally
symmetric space with nonpositive sectional curvature.

Remark 5.23. This result is a G2-counterpart for theorems of Liu–Yin [87] and Wei
[119] for moduli spaces of Calabi–Yau 3- and 4-folds.

For the proof of the theorem, first remark that since Φ is a horizontal immersion,
Φ(M ) is totally geodesic in D if and only if the composition q ◦Φ : M → S2

+(H3)∗

is a totally geodesic immersion. Moreover, the metrics Φ∗gD and Φ∗q∗gS2
+

coincide,
and therefore it is enough to prove that the results hold for the map q ◦ Φ instead
of Φ. The advantage of working in S2

+(H3)∗ instead of D is that we can work
directly in coordinates which are compatible with affine coordinates on M .

First we need to introduce some notations. For the remainder of this part we
will fix a basis (u0, . . . , un) of H3 and denote (x0, . . . , xn) the associated system
of coordinates, considered as local coordinates on M . Any symmetric bilinear
form q ∈ S2(H3)∗ can be written uniquely q = qkldx

kdxl where qkl = qlk and as
before we write dxkdxl as a short-hand for the tensor product dxk ⊗ dxl. Then
(qkl)1≤k≤l≤n define global coordinates on the open cone S2

+(H3)∗ of inner products
on H3. Let us write the canonical symmetric metric of gS2

+
in these coordinates.

Let us pick q ∈ S2
+(H3)∗ and q̇ ∈ S2(H3)∗ ≃ TqS

2
+(H3)∗ written as

q = qkldx
kdxl ∈ S2

+(H3)∗, q̇ = q̇kldx
kdxl ∈ TqS

2
+(H3)∗.

There exists a unique q-self-adjoint endomorphism a ofH3 such that q̇ = d
dt

∣∣∣
t=0

(eta)∗q =
q(a·, ·) + q(·, a·) = 2q(a·, ·) and by definition |q̇|2q = tr(a2) = ak

l a
l
k. In coordinates

we have ak
l = 1

2q
krq̇rl and hence it follows that

gS2
+
(q̇, q̇) = 1

4q
klqrsq̇krq̇sl.

One can use this expression to compute the Christoffel symbols of gS2
+

and deduce
that its Levi-Civita connection ∇ can be characterised as follows:
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Lemma 5.24. Let q̇ = q̇kldx
kdxl and q̇′ = q̇′

kldx
kdxl be vector fields with constant

coefficients on S2
+(H3)∗. Then the covariant derivative ∇q̇ q̇

′ is given by

∇q̇ q̇
′ = −1

2q
rs(q̇krq̇

′
ls + q̇lrq̇

′
ks)dxkdxl.

If φ is a torsion-free G2-structure on M then q ◦Φ(φD) is the L2-inner product
induced by φ on H3 ≃ H 3(M, gφ), and therefore in the coordinates xa we have

q(x) = e−F/3Gkldx
kdxl (5.14)

where the factor e−F/3 = Vol compensates the volume normalisation in the defi-
nition of the metric G . Thus as a subspace of S2

+(H3)∗, (q ◦ Φ)∗TM is spanned
by the vectors

∂q

∂xa
= e−F/3

(
Fakl − 1

3FaGkl

)
dxkdxl, a = 0, . . . , n. (5.15)

With a small abuse, we still denote ∇ the pull-back connection (q ◦ Φ)∗∇, con-
sidered as a connection on the trivial vector bundle M × S2(H3)∗. Using Lemma
5.24, we have

∇∂a

∂

∂xb
=e−F/3

(
Fabkl − 1

3GabGkl − 1
3FaFbkl − 1

3FbFakl + 1
9FaFbGkl

)
dxkdxl

− 1
2e

−F/3G rs
(
Fakr − 1

3FaGkr

)(
Fbls − 1

3FbGls

)
dxkdxl

− 1
2e

−F/3G rs
(
Faks − 1

3FaGks

)(
Fblr − 1

3FbGlr

)
dxkdxl

=e−F/3
(
Fabkl − 1

2G rsFakrFbls − 1
2G rsFaksFblr − 1

3GabGkl

)
dxkdxl.

In the next proposition, we rewrite this expression in a more intrinsic way:

Proposition 5.25. The connections ∇, ∇G and the covariant derivative of the
Yukawa coupling are related by

∇∂a

∂

∂xb
= ∇G

∂a

∂

∂xb
+ 2e−F/3∇G

a Ξbkldx
kdxl

where we see ∇G
∂a

∂
∂xb as an element of S2(H3)∗ via the inclusion (q ◦ Φ)∗TM ⊂

S2(H3)∗.

Proof. By our previous computation we have

∇∂a

∂

∂xb
=e−F/3

(
Fabkl − 1

2G rs(FakrFbls + FaksFblr + FabrFkls)
)
dxkdxl

+ e−F/3
(1

2G rsFabrFkls − 1
3GabGkl

)
dxkdxl.

(5.16)
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Comparing with the expression of the covariant derivative of the Yukawa coupling
given in §5.1.3, the term on the first line is 2e−F/3∇G

a Ξbkl. We need to rewrite the
second term using the special properties of the function F and its derivatives. By
Remark 5.1 and Lemma 5.11 we have the identities

xmGsm = −Fs, xmFmab = −2Gab. (5.17)

Now let us compute:

1
2G rsFabrFs = −1

2G rsGsmx
mFabr = −1

2x
rFabr = Gab

and thus the term on the second line of (5.16) can be written as

e−F/3
(1

2G rsFabrFkls − 1
3GabGkl

)
= 1

2G rsFabr · e−F/3
(
Fkls − 1

3FsGkl

)
.

By (5.4), 1
2G

rsFabs are the Christoffel symbols of the metric G in the affine coor-
dinates xk, whilst e−F/3(Fkls − 1

3FsGkl)dxkdxl is just ∂q
∂xs by (5.15). Hence

1
2G rsFabr · e−F/3

(
Fkls − 1

3FsGkl

)
= ∇G

∂a

∂

∂xb

which finishes the proof of the lemma.

After these preliminary computations, let us now prove the theorem:

Proof of Theorem 5.22. From the previous proposition it follows that if ∇G Ξ ≡ 0
then the connections ∇ and ∇G coincide. In that case, ∇ has no component along
the normal space of q ◦ Φ(M ) in S2

+(H3)∗ and thus q ◦ Φ is a totally geodesic
immersion. This also implies that ∇ is equal to its projection on the tangent
space of M , which is exactly the Levi-Civita connection of Φ∗gD, and therefore
G and Φ∗gD have the same Levi-Civita connection. Moreover, since S2

+(H3)∗ is
a symmetric space with nonpositive sectional curvature [59], the metric Φ∗gD =
Φ∗q∗gS2

+
is locally symmetric and has nonpositive sectional curvatures, and as

these properties only depend on the Levi-Civita connection the metric G must
also satisfy this property.

It remains to prove that if Φ is a totally geodesic immersion then the Yukawa
coupling is parallel. Thus let us assume that Φ is totally geodesic. Since the map
q : D → S2

+(H3)∗ is a Riemannian fibration and Φ is a horizontal map, it follows
that q ◦ Φ is also a totally geodesic immersion. Therefore, the connection ∇ of the
bundle M ×S2(H3)∗ must preserve the tangent space TM (seen as a subbundle).
Given the expression of the connection ∇ given in Proposition 5.25, we deduce that
for all 0 ≤ a ≤ b ≤ n, the quadratic form ∇aΞbkldx

kdxl is a section of TM when Φ
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is a totally geodesic immersion. We shall now prove that there exists a subbundle
E of M × S2(H3)∗ such that TM ⊕ E = M × S2(H3)∗ and ∇aΞbkldx

kdxl is a
section of E for any 0 ≤ a ≤ b ≤ n. Once we have shown this, then when Φ is
totally geodesic each ∇aΞbkldx

kdxl is a section of both TM and its complement
E and therefore it must vanish, whence ∇aΞbkl = 0 for all 0 ≤ a, b, k, l ≤ n and
the theorem is proved.

Using local affine coordinates, let us define E by

Ex = {q ∈ S2(H3)∗, q(·, x) = 0} ⊂ S2(H3)∗.

The subspaceEx has codimension n+1 in S2(H3)∗, that is codim(Ex) = dim(TxM ).
By Lemma 5.11, for any 0 ≤ a, b ≤ n the covariant derivative of the Yukawa cou-
pling satisfies

xr∇G
a Ξbkr = 0

and therefore the quadratic form ∇G
a Ξbkldx

kdxl takes values in Ex.
In order to prove that Ex is a complement of TxM in S2(H3)∗, we need to

prove that the n + 1 linear forms ∂q
∂xa (·, x) ∈ (H3)∗ are linearly independent. By

(5.15), we have

eF/3 ∂q

∂xa
(·, x) = xrFakrdx

k − 1
3x

rFaGkrdx
k

= −2Gakdx
k + 1

3FaFkdx
k

= −2G

(
∂

∂xa
, ·
)

+ 1
3
∂F

∂xa
· dF ,

where we used the identities (5.17) to pass from the first to the second line. After
a linear change of coordinates, we may assume that ∂

∂x1 , . . . ,
∂

∂xn are tangent to the
level set of F at the point x. Hence we just have ∂q

∂xa (·, x) = −2e−F/3G (∂a, ·) for
1 ≤ a ≤ n, and this gives n linearly independent linear forms. Moreover, using
Remark 5.1 we can compute that

eF/3xr ∂q

∂xr
(·, x) = −2xaG

(
∂

∂xa
, ·
)

+ 1
3x

a∂F

∂xa
· dF = 2dF − 7

3dF = 1
3G (x, ·)

and this gives another linear form independent from the previous ones, since xr ∂
∂xr

is linearly independent of ∂
∂x1 , . . . ,

∂
∂xr (as xrFr ̸= 0). Thus the n+ 1 linear forms

∂q
∂xa (·, x), a = 0, . . . , n, are independent. Hence TxM is a complement of Ex in
S2(H3)∗, which completes the proof of the theorem.
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5.4 Transversality as an exterior differential sys-
tem

By means of closing this chapter, this section gathers a few general observations
about the transversality conditions for immersions into the domain D. This no-
tably allows us to relate the map Φ which we defined on G2-moduli spaces to the
classical notion of period map defined by Joyce [66, §10.4] in a natural way.

Our general setup is the following. We will denote by H a 2(n+1)-dimensional
vector space (n ≥ 1) endowed with a symplectic structure Q and an involution ι

of H such that ι∗Q = −Q. We denote by H± ⊂ H the ±1 eigenspaces of ι, which
must be Lagrangian. In particular, Q identifies H− with H∗

+. This structure is
exactly what we need in order to define abstractly the domain D as the space
of decompositions H = H(3) ⊕ H(2) ⊕ H(1) ⊕ H(0) satisfying the axioms (1), (2)
and (3). Of course if H = H3(M) ⊕ H4(M) for a compact G2-manifold M , then
H+ = H3(M) and H− = H4(M). All the notions defined in Section 5.2 carry on
to our abstract setting in a straightforward way, including the notion of adapted
basis of an element H ∈ D, and the definitions of ℓH ∈ P(H) and qH ∈ S2

+H
∗
+.

5.4.1 Dimension and generality of transverse submanifolds. In this part
we study general properties of transverse immersions. For this purpose, it will be
useful to express the condition of transversality as an exterior differential system.
For generalitites about exterior differential systems, we refer to the lectures [17].
Let us denote by I ⊂ T ∗D the annihilator of T tD. Then a map Φ : P → D is
transverse if and only if

Φ∗α = 0, ∀α ∈ C∞(I)

where C∞(I) is the space of smooth sections of I over D. We denote by {I} ⊂
Λ(T ∗D) the ideal algebraically generated by I, seen as a subbundle of the exterior
algebra Λ(T ∗D). Alternatively, {I} can be defined as the space of differential
forms vanishing on the transverse distribution. Therefore, the pull-back of any
section of {I} vanishes along a transverse map, and so does the pull-back of the
exterior differential of such a section. This leads us to considering the bundle map
δ : I → Λ2(T ∗D)/{I} defined as

δα ≡ dα mod {I}

for any section of I. The differential ideal I ⊂ Ω∗(D) generated by I is the space
of sections of the ideal {I, δI} ⊂ Λ(T ∗D), where we think of Λ2(T ∗D)/{I} as
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Λ2(T tD)∗ ⊂ Λ2(T ∗D). With these definitions, a map Φ : P → D is transverse if
and only if

Φ∗η = 0, ∀η ∈ I .

We will be interested in transverse maps satisfying certain independence condi-
tions. Namely, we want to study n-dimensional transverse immersions Φ : P → D

such that the composition ℓ ◦ Φ : P → P(H+) is a local diffeomorphism. This
condition is equivalent to requiring that the pull-back ϖ of a local volume form
on P(H+) does not vanish on P . Such an immersion locally defines a submanifold
of D ≃ P(H+) which is graphical over an open subset of P(H+), and is said to be
an integral submanifold of (I , ϖ) (with the understanding that ϖ is only locally
defined if P(H+) is not orientable).

Since the transverse distribution is equivariant, the properties of the differ-
ential ideal I are determined by the fibre IH of I and the map δ : IH →
Λ2(T ∗

HD)/IH over any point of D. Thus we shall fix H ∈ D and a standard
basis (u0, . . . , un, v0, . . . , vn) of H for H. Recall from §5.2.2 that the tangent space
THD can be identified with the space of matrices

pH = {(aij)0≤i,j≤n, aij = aji ∀1 ≤ i, j ≤ n}.

Moreover, the distributions T vD, T hD, T lD and T tD correspond to the subspaces

vH = {a ∈ pH, aij = 0 ∀1 ≤ i, j ≤ n and a0j = −aj0 ∀0 ≤ j ≤ n},

hH = {a ∈ pH, aij = aji ∀0 ≤ i, j ≤ n},

lH = {a ∈ pH, aij = 0 if (i, j) ̸= (0, 0)}, and
tH = {a ∈ pH, a00 = 0 and aij = aji ∀0 ≤ i, j ≤ n}.

Let us consider the linear forms on pH defined as:

αj(a) = (aj0 − a0j)/2, 1 ≤ j ≤ n,

βj(a) = (aj0 + a0j)/2, 0 ≤ j ≤ n, and
βij(a) = (aij + aji)/2 = βji, 1 ≤ i, j ≤ n.

Then IH is spanned by β0, α1, . . . , αn, and moreover we can choose ϖ = β1∧· · ·∧βn

as independence condition at H. Let us denote by {ej}1≤j≤n ∪ {fj}0≤j≤n ∪ {fij =
fji}1≤i≤j≤n the dual basis of pH.

The structure equations for the transverse distribution are the following:

Proposition 5.26. The map δ : IH → Λ2(p∗
H)/{IH} is determined by:

δβ0 ≡ 0 mod {IH}, and δαj ≡
n∑

i=1
βi ∧ βij mod {IH}, 1 ≤ j ≤ n.
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Proof. The dual space p∗
H is naturally identified with the annihilator of gH in

gl(H+), and Λ2(p∗
H)/{IH} can be identified with Λ2(t∗H). Under this identification,

the Maurer-Cartan formula yields:

δα(a, b) = −α([a, b]), ∀α ∈ IH,∀a, b ∈ tH

where [·, ·] denotes the Lie bracket on gl(H+). Therefore, if we write

δα ≡ 1
2
∑

Bijβi ∧ βj + 1
2
∑

Cijkβi ∧ βjk + 1
4
∑

Dijklβij ∧ βkl mod {IH}

where all indices range over integers in between 1 and n, the coefficients are defined
by:

Bij = −α([fi, fj]) = −Bji,

Cijk = −2δjkα([fi, fjk]) = Cikj, and
Dijkl = −2δij+δjkα([fij, fjk]) = Djikl = Dijlk.

Note that for any [a, b] ∈ tH, the bracket [a, b] is qH-antisymmetric, and since β0

vanishes on qH-antisymmetic endomorphisms we deduce

δβ0 ≡ 0 mod {IH}.

As endomorphisms of H+, the fij’s act trivially on ℓH and leave invariant its
orthogonal space, and thus so do the brackets [fij, fkl]. Hence we deduce that
α([fij, fkl]) = 0 for any α ∈ IH. On the other hand, as the ej’s are qH-antisymmetric,
the brackets [ei, ej] are qH-symmetric, and thus αk([ei, ej]) = 0 for all 1 ≤ i, j, k ≤
n. These observations yield

δαl ≡ −1
2
∑

αl([fj, fjk])βi ∧ βjk mod {IH}

and it only remains to compute the coefficients αl([fi, fjk]). Let us introduce the
basis {Eij}0≤i,j≤n of gl(H+) defined by Eij(uk) = δjkui, for 0 ≤ i, j, k ≤ n, so that:

ej = Ej0 − E0j, 1 ≤ j ≤ n,

fj = 2−δ0j (Ej0 + E0j), 0 ≤ j ≤ n,

fij = 2−δjk(Eij + Eji), 1 ≤ i, j ≤ n.

From the commutators [Eij, Ekl] = δjkEil − δilEkj we deduce:

2δjk [fi, fjk] = [Ei0 + E0i, Ejk + Ekj] = −δijek − δikej

and hence

δαl ≡ 1
2

∑
1≤i,j,k≤n

(δijδkl + δikδjl)βi ∧ βjk ≡
n∑

i=1
βi ∧ βil mod {IH}

for any 1 ≤ l ≤ n.
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Let E ⊂ THD be a linear subspace. It is said to be an integral element of
I if the restriction of any differential form in I vanishes on E. If moreover E
has dimension n and ϖ does not vanish on E then it is called an integral element
of (I , ϖ). The integral elements of (I , ϖ) based at H are easily determined
using the structure equations of the transverse distribution. Indeed, the indepen-
dence condition ϖ ̸= 0 is equivalent to the linear independence of the linear forms
β1, . . . , βn, and any n-dimensional subspace E ⊂ tH satisfying this condition is
uniquely characterised by the equations:

β0 = α1 = · · · = αn = 0,

βij =
n∑

k=1
Cijkβk, ∀1 ≤ i, j ≤ n,

where Cijk are arbitrary coefficients symmetric in the indices i and j. The necessary
and sufficient condition for E to be an integral element of I is that the 2-forms
δα1, . . . δαn ∈ Λ2(t∗H) vanish on E:

0 =
n∑

i,k=1
Cijkβi ∧ βk = 1

2

n∑
i,k=1

(Cijk − Ckji)βi ∧ βk, ∀1 ≤ j ≤ n.

Hence E is an integral element of I if and only if the coefficients Cijk are fully
symmetric in the indices i, j, k.

Remark 5.27. From the definition of the quadratic form hD on T tD and the ex-
pression of the linear forms β1, . . . , βn, one can easily see that hD = ∑

i β
2
i . Hence

an integral element E of I , of rank n, satisfies the independence condition ϖ ̸= 0
if and only if the restriction of the quadratic form hD to E is positive-definite.

Remark 5.28. Similarly, the coefficients Cijk correspond (up to a combinatorial fac-
tor) to the coefficients of the cubic form ΞD, in the basis of E dual to β1, . . . , βn.
This explains why the restriction of ΞD to any integral element of (I , ϖ) is sym-
metric, even though ΞD itself is not a symmetric cubic form on T tD.

Remark 5.29. Let E1, E2 be integral elements of (I , ϖ) (not necessarily based at
the same point), and denote by (hi,Ξi) the restriction of (hD,ΞD) to Ei. Then it
is not difficult to prove that if there is a linear isomorphism ϕ : E1 → E2 such that
ϕ∗(h2,Ξ2) = (h1,Ξ1), then there exists an element A ∈ Aut(H,Q, ι), unique up to
multiplication by ± Id, such that ϕ is the restriction to E1 of the action of A on
the tangent space TD.

This algebraic fact has an interesting counterpart (which we will not prove for
lack of space) for real-analytic integral submanifolds of (I , ϖ). Namely, let P
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be a connected real-analytic manifold and Φ1, Φ2 be two real-analytic transverse
immersions of P into D, such that Φ∗

1(hD,ΞD) = Φ∗
2(hD,ΞD) and Φ∗

1hD is non-
degenerate. Then there exists an automorphism A ∈ Aut(H,Q, ι), unique up
to multiplication by ± Id, such that Φ2 = A ◦ Φ1. This can be proved by first
considering the tangent map at one point, using the previous algebraic fact, and
then extending it to the rest of the manifold.

This might explain why, in the literature, the metric G and the Yukawa cou-
pling Ξ are the only natural tensors considered on G2-moduli spaces (at least to
the author’s knowledge); in some sense they completely characterise the geometry
of M and how it is immersed into D.

An integral element of I is called maximal if it is not strictly contained in
another integral element of I . Any integral element of I is contained in the
transverse distribution, but due to the non-triviality of the map δ the codimension
of a maximal integral element of I is in general much larger than n + 1. As a
consequence of the previous proposition we prove:

Corollary 5.30. Any integral element of (I , ϖ) is a maximal integral element of
I . Thus any integral submanifold of (I , ϖ) is a maximal transverse submanifold
of D.

Proof. It suffices to prove that any integral element of I on which β1, . . . , βn are
linearly independent has dimension exactly n. Let E be such an integral element.
As δαj vanishes on E, then so does the n+ 1-form

β1 ∧ · · · ∧ βi−1 ∧ βi+1 ∧ · · · ∧ βn ∧ δαj = (−1)n−i+1ϖ ∧ βij

for 1 ≤ i, j ≤ n. Hence β1, . . . , βn, βij are linearly dependent on E, and therefore
there exist coefficients Cijk symmetric in i and j such that E is contained in the
kernel of the n(n+1)

2 linearly independent linear forms

βij =
n∑

k=1
Cijkβk.

Since moreover β0, α1, . . . , αn vanish on E, E is contained in the kernel of n +
1 + n(n+1)

2 linearly independent linear forms on THD, and thus it has dimension
at most n. Since β1, . . . , βn are linearly independent on E we deduce that E has
dimension n and is an integral element of (I , ϖ).

Remark 5.31. Using the structure equations of the transverse distribution, one can
prove that any integral element of (I , ϖ) is a regular integral element of I in
the sense of Cartan–Kähler theory. Moreover, the general real-analytic integral
submanifold of (I , ϖ) depends on n + 1 constants, n functions of one variable,
. . . , 2 functions of n− 1 variables and 1 function of n variables.
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5.4.2 The canonical contact system. Let us denote by Ω ⊂ P(H) the open
subset defined by

Ω = {⟨w⟩ ∈ P(H), Q(ι(w), w) > 0}. (5.18)

The automorphism group of (H,Q, ι), which can be identified with GL(H+), acts
transitively on Ω, and there is an equivariant fibration π : D → Ω mapping any
H ∈ D to π(H) = H(3) ∈ Ω. The domain Ω carries a differential ideal obtained
by restriction of the canonical contact system of P(H), which can be described as
follows. On H\{0} we can consider the one-form

Γ = Q(dw,w). (5.19)

Since Q is alternated, Γw vanishes on ⟨w⟩ for any w ̸= 0, and moreover Γfw = f 2Γw

for any smooth nowhere vanishing function f defined on H\{0}. Hence Γ induces
a well-defined 1-dimensional subbundle of T ∗P(H), and the associated exterior
differential system J is the canonical contact system. The name contact system
corresponds to the fact that

γ ∧ (dγ)n ̸= 0

for any nonvanishing one-form in J . It is a classical fact that the maximal
integral submanifolds of such a system have dimension n. Using coordinates
(w0, . . . , wn, w0, . . . , wn) on H such that

Q =
n∑

j=0
dwj ∧ dwj (5.20)

then the contact system, in homogeneous coordinates [w0 = 1 : w1 : . . . : wn : w0 :
. . . : wn], is generated by:

γ = dw0 +
n∑

j=1
wjdwj − wjdw

j (5.21)

and in particular:
dγ = −2

n∑
j=1

dwj ∧ dwj. (5.22)

In this part, we point out that there is a one-to-one correspondence between in-
tegral submanifolds of (I , ϖ) and maximal solutions of the canonical contact
system on Ω, together with some open condition. In fact, the exterior differential
system (I , ϖ) appears as the first prolongation of J . Since our construction is a
straightforward adaptation of an argument of Bryant and Griffiths [18] who prove
a similar result for variations of Hodge structures, we will only briefly explain the
correspondence and refer to their paper for more details on contact systems and
the process of prolongation.

159



Let us denote by Vn(Ω,J ) the space of n-dimensional integral element of J

over Ω. We consider the open subset VΩ ⊂ Vn(Ω,J ) defined as:

VΩ = {E ∈ Vn(Ω,J ), Q(ι(ϕ(w)), ϕ(w)) < 0, ∀ϕ ∈ E}

where we identify the tangent space TπΩ with the space of linear maps from π

to its Q(ι·, ·)-orthogonal complement in H. The domain VΩ is acted upon by the
automorphism group of (H,Q, ι), identified with GL(H+). The key observation is:

Lemma 5.32. There is an equivariant diffeomorphism D → VΩ such that the
following diagram commutes:

D //

��

VΩ

~~
Ω

Proof. It is enough to show that we can identify the fibres of D and VΩ over an
element π ∈ Ω. Let us use coordinates (w0, . . . , wn, w0, . . . , wn) on H such that Q
takes the form (5.20) and ι reads:

ι(wj, wj) = (wj, w
j).

We can moreover assume that ∂
∂w0 ∈ π since π ∈ Ω. Hence the integral elements

of the contact system lying over π are subject to the equations:

dw0 = 0, and
n∑

j=1
dwj ∧ dwj = 0.

Denoting H(3) = π, the space of integral elements lying over π can therefore be
described as the set of n-dimensional subspaces H(2) ⊂ H satisfying:

Q(ι(H(3)), H(2)) = Q(H(3), H(2)) = Q(H(2), H(2)) = 0,

and moreover such an integral element belongs to VΩ if and only if

Q(ι(H(2)), H(2)) < 0.

If we let H(0) = ι(H(3)) and H(1) = ι(H(2)), the above conditions are equivalent to
requiring that H = H(3) ⊕H(2) ⊕H(1) ⊕H(0) be an element of D.

Let us denote by Gr(n, TΩ) the Grassmannian of n-planes in TΩ, and consider
VΩ as a submanifold of Gr(n, TΩ). Let us pick E ∈ VΩ, and denote by H ∈ D the
corresponding base point. We may use coordinates (w0, . . . , wn, w0, . . . , wn) such
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that Q takes the form (5.20), ι(wj, wj) = (wj, w
j), and moreover the decomposition

H = H(3) ⊕H(2) ⊕H(1) ⊕H(0) satisfies:

H(3) = span
{

∂

∂w0

}
, H(2) = span

{
∂

∂wj

, 1 ≤ j ≤ n

}
.

We use homogeneous coordinates [w0 = 1 : w1 : . . . : wn : w0 : . . . : wn] on P(H). In
a neighbourhood of E in Gr(n, TΩ), the 1-forms dw1, . . . , dwn are linearly indepen-
dent, and therefore Gr(n, TΩ) has a system of coordinates w1, . . . , wn, w0, . . . , wn,
qi, pij for 1 ≤ i, j ≤ n so that:

dw0 =
n∑

i=1
qidwi, and dwj =

n∑
i=1

pijdwi. (5.23)

In homogeneous coordinates, the canonical contact system of P(H) is generated by
a 1-form γ satisfying (5.21) and (5.22), and thus the submanifold VΩ ⊂ Gr(n, TΩ)
is cut out by the equations

qi =
n∑

j=1
wjp

ij − wi, 1 ≤ i ≤ n,

and
pij = pji, 1 ≤ i, j ≤ n.

In particular, the variables w1, . . . , wn, w0, . . . , wn, p
ij for 1 ≤ i ≤ j ≤ n are

independent of VΩ near E.
In the domain where dw1, . . . , dwn are linearly independent, (5.23) defines an

exterior differential system on Gr(n, TΩ), called the canonical system. Its restric-
tion to VΩ, often denoted J (1), is called the first prolongation of the exterior
differential system J on Ω, and its n-dimensional integral submanifolds are in
one-to-one correspondence with the integral submanifolds of J whose tangent
spaces lie in VΩ. At the point E ∈ VΩ, we have qi = pij = 0 and thus:

d(dw0 −
n∑

i=1
qidwi) ≡ 0 mod {dw0, dw

1, . . . , dwn},

and
d(dwj −

n∑
i=1

pijdwi) ≡
n∑

i=1
dwi ∧ dpij mod {dw0, dw

1, . . . , dwn}.

Examining the proof of Lemma 5.15, we see that we have the identifications αi =
dwi for 1 ≤ i ≤ n, βj = dwj for 0 ≤ j ≤ n and βij = dpij for 1 ≤ i, j ≤ n, in
the notations of the previous part. Comparing with the structure equations of the
transverse distribution in D, we deduce:
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Proposition 5.33. Under the identification D ≃ VΩ, (I , ϖ) is the restriction
to VΩ of the first prolongation J (1) of the canonical contact system of Ω. Con-
sequently, there is a one-to-one correspondence between the immersed transverse
submanifolds of D on which hD is a Riemannian metric and the maximal integral
submanifolds of the canonical contact system whose tangent spaces lie in VΩ.

For the moduli spaces of G2-manifolds, this result has a clear interpretation.
Indeed, it was proved by Joyce that the map φD ∈ M 7→ [φ]+ [Θ(φ)] ∈ H3(M)⊕
H4(M) is a Lagrangian immersion. In particular, the restriction of this map to
M1 composed with the quotient map H\{0} → P(H) is a Legendrian immersion.
Hence M1 can be seen as a maximal immersed integral submanifold of the canonical
contact system of P(H), and it is easy to see that its tangent spaces lie in VΩ. The
transverse map Φ : M1 → D which we constructed is exactly the associated
integral submanifold of (I , ϖ); and moreover, up to a factor the restriction of hD
coincides with the metric G1 (by Proposition 5.18).

5.4.3 Transverse submanifolds and local potentials. To finish this chapter,
we show that the potential F can be recovered (at least locally, and up to some
choices of normalisation) from the map Φ : M1 → D. In fact, we can locally
associate a convex function to any integral submanifold of (I , ϖ). In particular
this shows that the result of Theorem 5.22 is not specific to G2-moduli spaces, but
holds for any integral submanifold P of (I , ϖ): the restriction of ΞD is parallel for
the Levi-Civita connection of the metric defined by restriction of hD if and only if
P is a totally geodesic submanifold of D.

In the remainder of this part, let us fix a basis u0, . . . , un of H+ and consider
the corresponding coordinates x0, . . . , xn on H+. For any x = (x0, . . . , xn) ∈
H+\{0}, we denote by ⟨x⟩ ∈ P(H+) the line generated by x and [x0 : · · · : xn]
its homogeneous coordinates. For any open subset U ⊆ P(H+) we denote by
C(U) ⊆ H+\{0} the open cone over U , that is:

C(U) = {x ∈ H+\{0}, ⟨x⟩ ∈ U}.

Locally, an integral submanifold of (I , ϖ) can be described by a map

U −→ P(H+) × S2
+(H+)∗, ℓ 7−→ (ℓ, qℓ)

where U is an open subset of P(H+). On C(U), let us consider the function

W (x) = q⟨x⟩(x, x).

This is a positive function, homogeneous of degree 2.
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Lemma 5.34. The first derivative of W is given by:

∂W

∂xa
= 2q⟨x⟩(x, ua)·

Proof. The partial derivatives of W satisfy:

∂W

∂xa
= (∂aq⟨x⟩)(x, x) + 2q⟨x⟩(x, ua)·

Since the map ⟨x⟩ → (⟨x⟩, q⟨x⟩) is transverse, Lemma 5.16 yields ∂aq⟨x⟩(x, x) = 0,
from which the proposition follows.

Proposition 5.35. The function F = −1
2 logW is convex on C(U), and moreover

its Hessian matrix is given by:

∂2F

∂xa∂xb
= q⟨x⟩(ua, ub)

q⟨x⟩(x, x) ·

Proof. We first compute the Hessian matrix of W . The precedent lemma yields:

∂2W

∂xa∂xb
= 2∂b(q⟨x⟩(x, ua)) = 2(∂bq⟨x⟩)(x, ua) + 2q⟨x⟩(ua, ub).

Let ϕb : ⟨x⟩ → ⟨x⟩⊥q⟨x⟩ be the linear map representing the vector ∂a⟨x⟩ ∈ T⟨x⟩P(H+).
Then it has for expression:

ϕb(x) = ub −
q⟨x⟩(x, ub)
q⟨x⟩(x, x) x.

By transversality, Lemma 5.16 gives:

(∂bq⟨x⟩)(x, ua) = −2q⟨x⟩(ϕb(x), ua) = 2q⟨x⟩(ua, x)q⟨x⟩(ub, x)
q⟨x⟩(x, x) − 2q⟨x⟩(ua, ub)

so that
∂2W

∂xa∂xb
= 4q⟨x⟩(ua, x)q⟨x⟩(ub, x)

q⟨x⟩(x, x) − 2q⟨x⟩(ua, ub)·

We may now deduce:

∂2 logW
∂xa∂xb

= 4q⟨x⟩(ua, x)q⟨x⟩(ub, x)
q⟨x⟩(x, x)2 − 2q⟨x⟩(ua, ub)

q⟨x⟩(x, x) −
2q⟨x⟩(ua, x) · 2q⟨x⟩(ub, x)

q⟨x⟩(x, x)2

= −2q⟨x⟩(ua, ub)
q⟨x⟩(x, x)

which gives the claimed expression for the Hessian matrix of F .

We shall refer to F as the local potential associated with the transverse map
ℓ 7→ (ℓ, qℓ). The above proposition shows that q⟨x⟩ can be reconstructed from
F , since it coincides with the Hessian of F at the point x of the line such that
W (x) = 1. In fact, there is a converse to this statement:
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Proposition 5.36. Let C ⊂ H+ be an open cone, U = S+ ∩C be its cross-section
and let W : C → R be a positive function, homogeneous of degree 2, and assume
that the function F = −1

2 logW is strictly convex. For any u ∈ U , let us denote
by x(u) ∈ H+ the unique element of ⟨u⟩ such that W (x(u)) = 1. Then the map:

u ∈ U 7−→

⟨u⟩, ∂2F

∂xa∂xb

∣∣∣∣∣
x=x(u)

 ∈ P(H+) × S2
+(H+)∗

is transverse.

Proof. Let us first determine the tangent space to the level sets of F . By homo-
geneity, we have:

F (tx) = F (x) − log t, ∀t > 0

and differentiating this expression with respect to t and then setting t = 1 yields:

xa ∂F

∂xa
= −1, ∀x ∈ C.

Since the left-hand side is constant, the partial derivatives of the expression on the
right-hand-side vanish:

xa ∂2F

∂xa∂xb
+ ∂F

∂xb
= 0, ∀x ∈ C, ∀b = 0, . . . , n. (5.24)

Let us denote by qx ∈ S2
+(H+)∗ the quadratic form associated with the Hessian

matrix of F . With these notations, the above equation can be written as:
∂F

∂xb
+ qx(x, ub) = 0, ∀x ∈ C, ∀b = 0, . . . , n.

Thus the tangent space to the level set of F at a point x ∈ C, or equivalently the
tangent space to the level sets of W , is the orthogonal complement of x for the
quadratic form qx. Let X1(x), . . . , Xn(x) be any local frame of the tangent space
to the level sets. By Lemma 5.16, transversality is equivalent to the fact that the
partial derivatives of qx in the directions of X1, . . . , Xn along the level set W = 1
satisfy:

(∂Xb
qx)(x, ua) + 2qx(Xb, ua) = 0, ∀a = 0, . . . , n.

Since qx is the Hessian of a function we can write:

(∂Xb
qx)(x, ua) =

n∑
c=0

xc(∂cqx)(Xb, ua)

and taking partial derivatives in (5.24) we obtain:
n∑

c=0
xc ∂3F

∂xa∂xb∂xc
+ 2 ∂F

∂xa∂xb
= 0

that is, ∑xc∂cqx + 2qx = 0, which implies the desired identity.
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Remark 5.37. In fact, the proof shows that there is nothing special about the
level set W = 1, or about the normalisation factor 1

2 , since we only used the fact
that the function ∑

xa ∂F
∂xa is constant. Hence we could replace W by a positive

function, homogeneous of degree d > 0 and the result would still hold. In the case
of G2-moduli spaces, the function F does not coincide with the the potential F ,
but they are related by an affine transformation. This does not really affect any
interesting geometric property.

Proposition 5.38. Let λ ∈ R\{2}. Then in the setup of the previous proposition,

x ∈ C 7−→
(

⟨x⟩, eλF ∂2F

∂xa∂xb
(x)
)

∈ P(H+) × S2
+(H+)∗

is a horizontal immersion.

Proof. We have already proved that the differential of this map is transverse along
the level sets of W . Thus it only remains to prove that the map is horizontal in the
radial direction. Let use denote by qx the quadratic form defined by the Hessian
of F . By Lemma 5.16, this amounts to proving that

∑
c

xc∂c(eλF qx)(x,X) = eλF (xcλ∂cFq(x,X) + xc∂cqx(x,X))0

for any vector X orthogonal to x, which is satisfied since ∑c x
c(∂cqx) + 2qx = 0.

To prove that the map is an immersion, it suffices to remark the the differential
of the map in the radial direction is not transverse, since ∑c x

c∂c(eλF qx)(x, x) =
(λ − 2)qx(x, x) ̸= 0, whilst the differential of the map x 7→ ⟨x⟩ vanishes in the
radial direction.

Using this proposition, it is easy see that the result of Theorem 5.22 applies
to any integral submanifold of (I , ϖ), or rather to the extension to a horizontal
submanifold constructed as above, for any choice of λ ̸= 2: the Hessian of the
potential F and its third derivative will define a natural Riemannian metric and
a symmetric cubic form on this extension, and their restrictions to the transverse
leaves coincide (up to some factor depending on the choice of λ) with the geometric
structures induced by hD and ΞD. Since the proof of the theorem only depended
on certain properties of the potential F which have straightforward counterparts
for the function F , it is readily extended to this more abstract setting.
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Chapter 6

Manifolds with holonomy strictly
contained in G2

In this short chapter we study examples of moduli spaces of compact G2-manifolds
with vanishing first Betti number and infinite fundamental group. They correspond
to G2-manifolds whose restricted holonomy (the identity component of the holon-
omy group) is a proper subgroup of G2. The material contained in this section
is not elsewhere published, and it is meant to be a complement to the previous
chapter in order to exemplify and give some perspective on our results.

Let (M,φ) be a G2-manifold with b1(M) = 0 and π1(M) infinite. As we dis-
cussed in §1.2.3, M has a finite cover π : M ′ → M , where M ′ is isometric to
the product of a flat torus T k and a compact simply connected Ricci-flat mani-
fold N7−k. In particular, the identity component of the holonomy group of M is
isomorphic to the holonomy group of N . Since the only proper subgroups of G2

appearing in the Berger’s list of holonomy groups are {1}, SU(2) and SU(3), there
are only three possible cases. Either M is flat, and is covered by a flat torus T 7; or
M has a cover isometric to T 3 ×X, where T 3 is a flat 3-torus and X a hyperkähler
K3-surface; or M has a cover isometric to S1 × Y 3, where S1 is a circle and Y a
compact simply-connected Calabi–Yau threefold. We seek to describe the moduli
space M of torsion-free G2-structures on M , and to push further the computations
of Chapter 5 by finding an expression for the terms Eabcd in order to understand
the properties of the metric G .

Compared with the case of manifolds with full holonomy G2, we are in an easier
situation since the deformations the torsion-free G2-structures on M correspond
to a combination of variations of the flat metric on T k and of the variations of
the Ricci-flat metric on N – and of the associated geometric structures – which
are much better understood. Therefore, we may compute the term Eabcd by lifting
everything to M ′ = T k × N via the covering map π : M ′ → M . That is, let
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(φx)x∈(−1,1) be a family of torsion-free G2-structures on M and (φ′
x)x∈(−1,1) be a

family of torsion-free G2-structures on M ′ such that

φ′
0 = π∗φ0, and ∂φ′

x

∂x

∣∣∣∣∣
x=0

= π∗ ∂φx

∂x

∣∣∣∣∣
x=0

.

Note that we do not assume φ′
x = π∗φx for all x ∈ (−1, 1). Then we have the

following easy consequence of Corollary 5.4:

Lemma 6.1. Let α ∈ Hk(M) be a cohomology class and let α′ = π∗α ∈ Hk(M ′).
For x ∈ I, let η(x) be the harmonic representative of α for the metric induced
by φx, and η′(x) the harmonic representative of α′ for the metric induced by φ′

x.
Then we have:

∂η′

∂x

∣∣∣∣∣
x=0

= π∗ ∂η

∂x

∣∣∣∣∣
x=0

.

6.1 Flat G2-manifolds

In this section, we consider the simplest type of compact G2-manifolds M with
b1(M) = 0. Such manifolds are quotients of a flat torus T 7 = R7/F by a finite
subgroup F of G2

1 fixing no line in R7, and the moduli space of torsion-free
G2-structures on M can be identified with (Λ3

+R∗
7)F (see Remark 1.7). Hence

in those cases understanding the moduli spaces becomes merely an exercise in
linear algebra, and in Appendix A we will give an explicit classification of all the
possibilities.

6.1.1 Geometry of the space of positive forms. In this part, we describe the
geometry of Λ3

+R∗
7, which we can see as an open cone in Λ3R∗

7 or as the homogeneous
space GL+(7)/G2. Either way, it is endowed with a homogeneous metric which
can be described as follows. If φ is a positive form and η ∈ TφΛ3

+R∗
7 ≃ Λ3R∗

7, then
the squared norm |η|2φ of η as a tangent vector is just the squared norm of η ∈ Λ3R∗

7

for the inner product induced by gφ. If we write η = h · φ where h ∈ End(R7)
is orthogonal to the Lie algebra of the stabiliser of φ, then there are constants
c1, c7, c27 > 0 such that

|η|2φ = c1|π1(h)|2φ + c7|π7(h)|2φ + c27|π27(h)|2φ
1The action of F on T 7 also contains a translation part if we want the quotient to be smooth, but
by moving to an appropriate finite cover we can arrange that F be isomorphic to its linearisation
as an abstract group, which we always implicitly assume.
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where |πk(h)|2φ denotes the squared norm of the components of h for the inner
product induced by gφ on End(R7). After some computations, we obtain

c1 = 9, c7 = 2, c27 = 2.

It is interesting to consider the homogeneous fibration φ ∈ Λ3
+R∗

7 7→ gφ ∈ S2
+R∗

7.
The space S2

+R∗
7 ≃ GL+(7)/ SO(7) of inner products on R7 can be given a sym-

metric space structure, where for any g ∈ S2
+R∗

7 and any g-self-dual endomor-
phism h, the norm of h · g ∈ S2R∗

7 ≃ TgS
2
+R∗

7 is given by |h|2g = tr(h2). This
space is a Riemannian product R × (SL(7)/ SO(7)), which corresponds to writing
|h|2g = (tr(h))2/7 + |h0|2g where h0 denotes the traceless part of h. If g = gφ for
some φ ∈ Λ3

+R∗
7 we have π1(h) = tr(h)g/7 and π27(h) = h0; in particular the map

g : Λ3R∗
7 → S2

+R∗
7 is a Riemannian fibration for a symmetric metric on S2

+R∗
7 which

is not the standard one, since c1, c27 ̸= 1. If φ ∈ Λ3
+R∗

7, the vertical space of the
fibration is Λ3

7,φ and the horizontal space is Λ3
1,φ ⊕ Λ3

27,φ.
There is at least another natural homogeneous metric that we can consider

on Λ3
+R∗

7, which has signature (28, 7). Let us fix an element µ ∈ Λ7
+R∗

7, and let
fµ : Λ3

+R∗
7 → R be the function defined by

µφ = fµ(φ)µ. (6.1)

This function is positive and homogeneous of degree 7
3 . In fact, if we take any

lattice Γµ in R7 such that
∫
R7/Γµ

µ = 1, we see that we have

fµ(φ) =
∫
R7/Γµ

µφ = Vol(R7/Γµ, φ).

Thus we deduce from Lemma 4.2 that the function Fµ = −3 log fµ has non-
degenerate Hessian, and if we denote by D the natural flat connection of Λ3

+R∗
7 we

have

D2
φFµ(η, η) = 1

fµ(φ)

∫
R7/Γµ

(|π1(η)|2φ + |π27(η)|2φ − |π7(η)|2φ)µφ

= |π1(η)|2φ + |π27(η)|2φ − |π7(η)|2φ.

Thus (Λ3
+R∗

7, D,D
2Fµ) is a pseudo-Hessian manifold. Moreover, D2Fµ coincides

with the natural homogeneous metric of Λ3
+R∗

7 on the horizontal space of the
fibration Λ3

+R∗
7 → S2

+R∗
7.

6.1.2 Positive forms invariant under the action of a finite group. Using
the remarks made in the previous part, we prove the following proposition which
describes (Λ3

+R∗
7)F when F ⊂ G2 is a finite subgroup such that (R7)F = 0:

168



Proposition 6.2. Let F be a finite subgroup of GL+(7) that fixes no line in R7.
Then the following properties hold:

(i) (Λ3
+R∗

7)F is a complete, horizontal and totally geodesic submanifold of Λ3
+R∗

7

for the natural homogeneous Riemannian structure.

(ii) (Λ3
+R∗

7)F has finitely many connected components.

(iii) Each connected component is isometric to (S2
+R∗

7)F endowed with the sym-
metric metric for which Λ3

+R∗
7 → S2

+R∗
7 is a Riemannian fibration.

Proof. To prove (i), assume that (Λ3
+R∗

7)F is nonempty and let φ be a positive
form that is fixed under the action of G. As F fixes no line in R7, it follows that
(Λ3

7,φ)F ≃ (R∗
7)F = 0, and therefore (Λ3R∗

7)F ⊂ Λ3
1,φ ⊕ Λ3

27,φ. Thus (Λ3
+R∗

7)F is
a horizontal submanifold of Λ3

+R∗
7. Hence any η ∈ (Λ3R∗

7)F can be written as
η = h · φ where h ∈ End(R7) is an F -invariant endomorphism, symmetric for
the inner product gφ. For any t ∈ R, the positive form φt = (eth)∗φ is also F -
invariant. Note that φt is a horizontal curve in Λ3

+R∗
7, and moreover gφt = (eth)∗gφ

is a geodesic in S2
+R∗

7; thus φt is a geodesic in Λ3
+R∗

7 [100]. This proves that
(Λ3

+R∗
7)F is totally geodesic in Λ3

+R∗
7, and also a complete Riemannian manifold.

For part (iii), the above argument also shows that Tφ(Λ3R∗
7)F can be identified

with the space of F -invariant endomorphisms of R7 that are symmetric for the
metric gφ, which is also the tangent space of (S2

+R∗
7)F at gφ. Thus the restriction

of g : Λ3
+R∗

7 → S2
+R∗

7 to (Λ3
+R∗

7)F induces a local isometry on (S2
+R∗

7)F (for the
symmetric metric on S2

+R∗
7 such that g is a Riemannian fibration). Now (S2

+R∗
7)F is

a symmetric space totally geodesically embedded into S2
+R∗

7, and the exponential
map at every point is a global diffeomorphism. We proved above that the geodesics
of (S2

+R∗
7)F lift to geodesics in (Λ3

+R∗
7)F , and thus we deduce that g is surjective,

and moreover the restriction of g to each connected component of (Λ3R∗
7)F is a

global isometry onto (S2
+R∗

7)F .
It remains to prove that (Λ3

+R∗
7)F has finitely many connected components.

By contradiction, assume that there are infinitely many. Then if g ∈ (S2
+R∗

7)F ,
there exists a sequence {φi}i∈N of elements of (Λ3

+R∗
7)F such that φi ̸= φj for i ̸= j

but gφi
= g for all i ∈ N . Any φi can be written α∗

iφ0 where αi preserves the
orientation and the inner product g. As SO(n) is compact, up to a subsequence
we can assume that αi converges to an automorphism α∞ of R7 preserving g

and the orientation of R7, and thus φi → φ∞ = α∗
∞φ0 as i → ∞ in Λ3R∗

7. As
φi is F -invariant for all i the limit φ∞ ∈ (Λ3

+R∗
7)F , and moreover by continuity

gφ∞ = g. Hence for i large enough, φ belongs to the connected component of φ∞
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in (Λ3
+R∗

7)F , and as gφi
= gφ∞ it follows that φi = φ∞ for i large enough, which

gives a contradiction.

Remark 6.3. It is not difficult to classify all the possible geometries for (S2
+R∗

7)F

where F is a finite subgroup of G2 such that (R7)F = 0; this is essentially an
exercise about the representation theory of finite subgroups of G2. Out of curiosity,
we carried it out in Appendix A; in most cases we just obtain a flat space, except
for certain representations of the dihedral groups D4, D6 and D8 (see Proposition
A.1 and Proposition A.3).

6.1.3 Moduli spaces of flat G2-manifolds. Let us now come back to the case
where M = T 7/F where (the linearisation of) F is a finite subgroup of G2. Then
the moduli space M of torsion-free G2-structures on M can be identified with
(Λ3

+R∗
7)F , and under this identification G can be identified with the homogeneous

metric since
1

Vol(φ)

∫
M

|η|2φµφ = |η|2φ

for any φ ∈ (Λ3
+R∗

7)F and η ∈ (Λ3R∗
7)F , where we see φ as a torsion-free G2-

structure on M and η has a harmonic 3-form. Hence each connected component
of M is a symmetric space isometric to (S2

+R∗
7)F ; in particular, it has nonpositive

sectional curvature.
This easy case is a good sanity check for the results of the previous chapter.

Indeed, from Theorem 5.8 it is easy to see that the terms Eabcd vanish, since the
space of harmonic forms is fixed along families of torsion-free G2-structures induced
by positive forms φ ∈ (Λ3

+R∗
7)F : the harmonic 3-forms are induced by the constant

alternating forms η ∈ Λ3R∗
7. Hence the fact that M is locally symmetric and has

nonpositive sectional curvature can also be seen as a consequence of Theorem 5.22.
This allows us to check the consistency of the results in that case.

Below we give a couple of examples of flat compact G2-manifolds M with
b1(M) = 0. We also describe the geometry of the moduli spaces (see Appendix A
for proofs). To describe these examples, it will be convenient to identify R7 with
C3 ⊕ R and use coordinates (z1, z2, z3, θ) where zk = xk + iyk, and to consider the
positive form

φ = Re(dz1 ∧ dz2 ∧ dz3) + i

2

3∑
k=1

dzk ∧ dzk ∧ dθ.

Example 6.4. Let T = R7/Z7 and consider the action of Z3
2 on T generated by the
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isometries α, β, γ defined by

α(z1, z2, z3, θ) = (−z1,−z2, z3, θ + 1/2),
β(z1, z2, z3, θ) = (−z1, z2 + 1/2,−z3, θ),
σ(z1, z2, z3, θ) = (z1 + 1/2, z2, z3 + 1/2,−θ).

We can check that any elements in the group acts as a translation on one of the
circle factors, and thus the Z3

2 acts freely, properly discontinuously on T . Moreover,
this action preserves φ, and hence the quotient is a compact G2-manifold M with
b1(M) = 0, b2(M) = 0 and b3(M) = 7. It turns out that each connected component
of the moduli space is isomorphic to a flat R7 (see Appendix A for a proof).

Example 6.5. Again, let T = R7/Z7, and consider the isometries α, σ defined as

α(z1, z2, z3, θ) = (iz1, iz2,−z3, θ + 1/4),
σ(z1, z2, z3, θ) = (z1, z2, z3 + (1 + i)/2,−θ).

These isometries preserve φ and satisfy the relations α4 = σ2 = 1 and σασ =
α−1, and hence they generate a finite group isomorphic to the dihedral group D8.
The action of D8 on T is free and properly discontinuous: clearly the subgroup
isomorphic to C4 generated by α acts without fixed points since all the elements act
by translation on the coordinate θ, and the elements of D4\C4 act by translation
either on the coordinate x3 or on the coordinate y3, so they also have no fixed
points. The resulting compact G2-manifold M = T/D8 has b1(M) = 0, b2(M) = 0
and b3(M) = 6. Each connected component of the moduli space M is isometric
to R4 × H(−1/8), where H(−1/8) is a hyperbolic space with sectional curvature
−1/8 (again, see Appendix A for a proof).

6.2 Manifolds with restricted holonomy SU(2)

When the restricted holonomy group ofM is SU(2), that is, ifM is a finite quotient
(T 3 × K3)/F , it turns out that the Yukawa coupling is also a parallel tensor on
the moduli space M , and hence the moduli space is locally symmetric and the
period map defined in the previous chapter is a totally geodesic immersion.

6.2.1 From K3 surfaces to compact G2-manifolds. By definition, a K3 sur-
face X is a smooth, compact, connected and simply connected complex surface
with trivial canonical bundle. By a theorem of Siu [107], every K3 surface is Käh-
ler, and therefore Yau’s solution of the Calabi conjecture implies that K3 surfaces
admit a unique Ricci-flat Kähler metric in each Kähler class [123]. Such a metric
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has holonomy SU(2), and since SU(2) ≃ Sp(1) the Ricci-flat Kähler metrics on
X are hyperkähler. Geometrically, this correspondence between Ricci-flat Kähler
metrics and hyperkähler metrics can be realised as follows. Let g be a Ricci-flat
Kähler metric on X and ω ∈ Ω2(X) be associated Kähler form. As the canonical
bundle of X is trivial, H2,0(X) ≃ C is spanned by a holomorphic volume form
Ω ∈ Ω2,0(X), and after multiplication by an element of C∗ we can assume that

ω2 = 1
2Ω ∧ Ω. (6.2)

Moreover, considering the type of forms we have the following relations

ω ∧ Ω = 0 = Ω2. (6.3)

Thus if we denote ω = ω1, Ω = ω2 + iω3 and µg the volume form associated with
g, relations (6.2) and (6.3) imply that the triple of forms ω = (ω1, ω2, ω3) satisfies

1
2ωi ∧ ωj = δijµg, ∀i, j = 1, 2, 3. (6.4)

Moreover, the real 2-forms ωi are self-dual with respect to the metric g. Hence ω is a
hyperkähler triple, that is, a triple self-dual 2-forms for the metric g satisfying (6.4)
and parallel for the Levi–Civita connection of g. Conversely, given a hyperkähler
triple ω with associated metric g on X, each symplectic form in the triple can
be written ωi = g(Ji·, ·) where Ji is an integrable complex structure on X, and
after possibly permuting the indices we may assume that the complex structures
(J1, J2, J3) satisfy quaternionic permutation relations. Then if we denote ω = ω1,
J = J1 and Ω = ω2 + iω3, ω is a Kähler metric on the complex K3 surface (X, J)
and Ω is a holomorphic volume form. By the work of various authors, it is known
that all K3 surfaces have the same underlying smooth manifold X and the moduli
space of hyperkähler metrics on X can be described by means of the period map
[20, 102, 107, 111].

If (M,φ) is a compact torsion-free G2-manifold whose universal cover is diffeo-
morphic to R3 × X, we noted before that there exists a hyperkäler triple ω and
a discrete group action Γ ≃ π1(M) → I(R3) × I(X, gω), where I(R3) is the group
of affine isometries of R3 for the standard Euclidean inner product and I(X, gω) is
the group of isometries of X with respect to the metric induced by ω, such that Γ
leaves invariant the G2-form

φω = dθ1 ∧ dθ2 ∧ dθ3 − dθ1 ∧ ω1 − dθ2 ∧ ω2 − dθ3 ∧ ω3 (6.5)

and (M,φ) is isometric to (R3 ×X)/Γ endowed with the G2-structure induced by
φω. The associated metric reads

gφω = dθ2
1 + dθ2

2 + dθ2
3 + gω.
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As Γ acts as a product, the 3-forms dθ1 ∧dθ2 ∧dθ3 and ∑ dθi ∧ωi are both invariant
under Γ, and hence Γ preserves the orientation on R3 and on X. Thus Γ can be
identified with a discrete subgroup of I+(R3) × I+(X, gω). Moreover, there is a
normal subgroup Γ0 of finite index in Γ acting trivially on X and as a lattice of
translations on R7. If we denote by F the finite quotient group Γ/Γ0 and T 3 =
R3/Γ0, then F acts by isometries preserving φω on T 3 ×X and M ≃ (T 3 ×X)/F .

Before describing the moduli spaces in the next part, let us give a few examples.
One idea to construct such compact G2-manifolds is to start with a finite group
F acting freely on a flat torus T 3, which preserves the orientation of T 3 and such
that there are no nontrivial fixed cohomology class in H1(T 3). An example of such
group would be F = Z2

2 generated by the isometries α, β defined as follows:

α(θ1, θ2, θ3) = (−θ1,−θ2, θ3 + 1/2),
β(θ1, θ2, θ3) = (−θ1 + 1/2, θ2 + 1/2,−θ3).

Notice that if we let γ = αβ then

γ(θ1, θ2, θ3) = (θ1 + 1/2,−θ2 + 1/2,−θ3 + 1/2)

so that Z2
2 indeed acts without fixed points on T 3.

Given such a group action, we may look for a hyperkähler triple ω on X and
an isometric action ρ of F onto (X, gω), which preserves φω for the product action
of F onto T 3 ×K3. Using the Torelli theorem, it is enough to find a right action
ρ∗ of F onto the lattice H2(X;Z), preserving the intersection form, and a triple
of cohomology classes [ω1], [ω2], [ω3] representing the periods of some hyperkähler
structure and such that ∑[dθi] ⊗ [ωi] is preserved by the induced (right) action on
H1(T 3) ⊗H2(X).

Let us describe a few such actions, for F = Z2
2 as above. The K3 lat-

tice H2(X;Z) is isomorphic to E8(−1)2 ⊕ H3, and under this identification we
shall write its elements x = (w1, w2, u1, v1, u2, v2, u3, v3), where wi ∈ E8(−1) and
(ui, vi) ∈ U . In particular, the intersection form reads

x • x = w2
1 + w2

2 + 2(u1v1 + u2v2 + u3v3)

where w2
i is the square of wi for the E8(−1)-quadratic form.

Example 6.6. With the previous notations, let us consider the following action of
Z2

2 on H3(X;Z):

ρ∗(α)(w1, w2, u1, v1, u2, v2, u3, v3) = (−w1,−w2,−u1,−v1,−u2,−v2, u3, v3),
ρ∗(β)(w1, w2, u1, v1, u2, v2, u3, v3) = (−w1,−w2,−u1,−v1, u2, v2,−u3,−v3),
ρ∗(γ)(w1, w2, u1, v1, u2, v2, u3, v3) = (w1, w2, u1, v1,−u2,−v2,−u3,−v3).
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This action clearly preserves the intersection form. The elements [dθi] ⊗ xi ∈
H1(T 3) ⊗H2(X) invariant under the action of Z3

2 are exactly of the form

x1 = (w1, w2, u1, v1, 0, 0, 0, 0),
x2 = (0, 0, 0, 0, u2, v2, 0, 0),
x3 = (0, 0, 0, 0, 0, 0, u3, v3).

In particular x1, x2, x3 are always orthogonal. Moreover x = (x1, x2, x3) span a
positive 3-plane in H2(X) if and only if

2u1v2 + w2
1 + w2

2 > 0, u2v2 > 0, u3v3 > 0.

Let us prove that there are hyperkähler structures on X whose periods satisfy these
conditions. It boils down to finding an orthogonal set of classes x1, x2, x3 ∈ H2(X)
satisfying the above conditions and such that the vector space they span in H2(X)
is not orthogonal to any root of the lattice H2(X;Z). For instance, this condition
holds if ui, vi as well as the coefficients of w1 and w2 in an integral basis of E8(−1)
are all linearly independent over Q, since for any root δ the orthogonality conditions
δ • xi = 0 can be expressed as a set of Q-linear equations.

Hence the quotient (T 3 × X)/Z3
2 is a compact G2-manifold with b1(M) =

b2(M) = 0, and we can easily compute that b3(M) = 1 + 18 + 2 + 2 = 23.

Example 6.7. Replace ρ∗ with

ρ∗(α)(w1, w2, u1, v1, u2, v2, u3, v3) = (w2, w1,−u1,−v1,−u2,−v2, u3, v3),
ρ∗(β)(w1, w2, u1, v1, u2, v2, u3, v3) = (w2, w1,−u1,−v1, u2, v2,−u3,−v3),
ρ∗(γ)(w1, w2, u1, v1, u2, v2, u3, v3) = (w1, w2, u1, v1,−u2,−v2,−u3,−v3).

This time the admissible classes [dθi] ⊗ xi ∈ H1(T 3) ⊗H2(X) have

x1 = (w,−w, u1, v1, 0, 0, 0, 0),
x2 = (0, 0, 0, 0, 0, u2, v2, 0, 0),
x3 = (0, 0, 0, 0, 0, 0, u3, v3).

and
2w2 + u1v1 > 0, u2v2 > 0 and u3v3 > 0.

Again, if we assume that the coefficients of w, ui, vi in an integral basis of H2(X;Z)
are rationally independent, then (after normalisation if necessary) x1, x2, x3 will be
represent the periods of a hyperkähler structure. Indeed if δ is a root orthogonal
to such x1, x2, x3, then we may deduce first that δ ∈ E8(−1)⊕E8(−1), and second
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that δ = (w′, w′, 0, . . . , 0) for some w′ ∈ E8(−1). But since the lattice E8(−1) is
even, the norm of (w′, w′) is divisible by 4, and we obtain a contradiction with the
fact that δ2 = −2.

This time, the quotient would be a compact G2-manifold with b1(M) = 0,
b2(M) = 8 and b3(M) = 15.

Example 6.8. For a more explicit description, we can for instance use the example
of Z2

2 action on a K3 surface X given in [68, Ex. 7.2]. Here the K3 surface is
constructed as a double cover of CP2 branched over the sextic curve C = {[z1 : z2 :
z3]|z6

1 + z6
2 + z6

3 = 0}. The Z2
2 action is generated by the involution swapping the

sheets of the double cover and the lift of the anti-holomorphic involution [z1 : z2 :
z3] 7→ [z1, z2, z3]. The resulting manifold M = (T 3 ×X)/Z2

2 has b1(M) = b2(M) =
0 and b3(M) = 23.

6.2.2 Structure theorem for the moduli spaces. Let us describe the defor-
mations of (M,φ). First, we need to start with the deformations of (T 3 ×X,φω).
The space of harmonic 3-forms on T 3 ×X decomposes as:

H 3(T 3 ×X,φω) = Λ3R∗
3 ⊕ (R∗

3 ⊗ H +
ω (X)) ⊕ (R∗

3 ⊗ H −
ω (X))

where H ±
ω (X) are the spaces of harmonic (anti-)self-dual 2-forms on (X,ω) and R∗

3

is the dual space of R3. Using this decomposition, we can describe the deformations
of φω by analysing separately each component.

• The first component Λ3R∗
3 is spanned by dθ1 ∧ dθ2 ∧ dθ3. Deforming of φω

along this direction corresponds to rescaling the inner product on T 3 by some
factor λ > 0, together with a rescaling of the hyperkähler triple ω by a factor
λ− 1

2 .

• R∗
3⊗H +

ω (X) has dimension 9 and contains H 3
1 (T 3×X,φω) as a 3-dimensional

subspace spanned by ∂
∂θk

⌟Θ(φω) = dθj ∧ ωi − dθi ∧ ωj for cyclic permuta-
tions (ijk) of {1, 2, 3}, corresponding to the isometric deformations of the
G2-structure φω. Its orthogonal complement has dimension 6, and decom-
poses as the direct sum of the 5-dimensional space {∑ aijdθi ∧ ωj, aij =
aji,

∑
aii = 0} corresponding to the infinitesimal deformations of the inner

product on T 3 with fixed volume element, and a 1-dimensional space spanned
by dθ1 ∧ ω1 + dθ2 ∧ ω2 + dθ3 ∧ ω3 corresponding to an infinitesimal rescaling
of the hyperkähler triple.
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• The third component R∗
3 ⊗ H −

ω (X) corresponds to the deformations of the
hyperkähler metric gω on X with fixed volume, where the inner product on
R3 is fixed.

Remark that F preserves this decomposition, since F can be identified with a finite
subgroup of I+(T 3)× I+(X, gω). Hence the quotient map T 3 ×X → M induces an
identification of H 3(M,φ) ≃ H 3(T 3 ×X,φω)F , and we obtain a decomposition:

H 3(M,φ) = Λ3R∗
3 ⊕

(
R∗

3 ⊗ H +
ω0

(X)
)F

⊕
(
R∗

3 ⊗ H −
ω0

(X)
)F
. (6.6)

Note that as φω is fixed by Γ, dθ1 ∧ dθ2 ∧ dθ3 must also be fixed by Γ. This
decomposition induces a splitting TM = T 0M ⊕ T+M ⊕ T−M of the tangent
bundle of M . Using this splitting and Theorem 5.8, we can prove:

Proposition 6.9. Let (M,φ) be a compact G2-manifold with b1(M) = 0 whose
universal cover is R3 × K3. Then the Yukawa coupling on M is parallel for the
Levi-Civita connection of G , and in particular (M ,G ) is locally symmetric.

Proof. Let us choose affine coordinates (x0, . . . , xn) near φD in M and prove that
the extra term Eabcd+Ecabd+Ecbad in Theorem 5.8 vanishes. Let us write n = n++n−

where n± is the dimension of (R∗
3⊗H ±

ω0
(X))F . Up to a linear change of coordinates,

we can assume that we chose coordinates adapted to the decomposition (6.6), in
the sense that the harmonic representative of ∂

∂x0 ∈ H3(M) for the metric gφ lies
in Λ3R∗

3, the harmonic representatives of ∂
∂x1 , . . . ,

∂
∂xn+ lie in (R∗

3 ⊗ H +
ω0

(X))F ,
and the harmonic representatives of ∂

∂xn++1 , . . . ,
∂

∂xn lie in (R∗
3 ⊗ H −

ω0
(X))F . Note

that this can only be imposed at the point φD ∈ M , not locally near this point.
Throughout the proof our computations will be local (in M), and therefore we can
lift everything to T 3 ×X, where the variations of the space of harmonic forms are
easier to understand (using the result of Lemma 6.1).

First we prove that if one of the indices a, b, c or d is between 0 and n+ then
Eabcd(φD) = 0, and similarly for Ecabd and Ecbad. Since Fabcd is fully symmetric
in its indices, we may assume that 0 ≤ d ≤ n+, and seek to prove that hd · η
is harmonic for any η ∈ H 3(M,φ). As a consequence of our discussion of the
deformations of φω on T 3 ×X, there is a deformation {φωt

}t∈(−ϵ,ϵ) of φω on T 3 ×X

which consists in a variation of the inner product on T 3 combined with a rotation
and a dilation of the hyperkähler triple on X, and such that ∂φωt

∂t

∣∣∣
t=0

is the lift of
ηd. In particular the space of harmonic forms on T 3 × X with respect to gφωt

is
fixed along this deformation of φω. Hence Lemma 5.7 implies that the lift of hd · η
to T 3 × X is harmonic whenever η is a harmonic form on M , and thus hd · η is
harmonic on M . Hence Eabcd(φD) = Ecabd(φD) = Ecbad(φD) = 0.
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Now let us assume that n+ + 1 ≤ a, b, c, d ≤ n. In this case, it is no longer
true that hd · ηc is harmonic, but we want to prove that the contribution to Eabcd

of its exact part cancels with the contribution of the co-exact part. This time, our
discussion of the deformations of torsion-free G2-structures on T 3 ×X implies that
there is a deformation {φωt

}t∈(−ϵ,ϵ) of φω such that ∂φωt

∂t

∣∣∣
t=0

= π∗ηd is the lift of ηd

and φωt
can be written

φωt
= dθ1 ∧ dθ2 ∧ dθ3 −

3∑
j=1

dθj ∧ ωj,t

where ωt = (ω1,t, ω2,t, ω3,t) is a family of hyperkähler triples on X. Now let η ∈
H 3(M,φ), representing a vector in T−

φ M . Its lift η̃ = π∗η on T 3 × X can be
written

η̃ = dθ1 ∧ α1 + dθ2 ∧ α2 + dθ3 ∧ α3

where α1, α2, α3 are anti-self-dual harmonic 2-forms on X, gω. In particular the
dual 4-form of η̃, which we denote by ν̃ = ∗φω η̃ = π∗(∗φη) is

ν̃ = −dθ2 ∧ dθ3 ∧ α1 − dθ3 ∧ dθ1 ∧ α2 − dθ1 ∧ dθ2 ∧ α3.

If we now denote by η̃t the harmonic representative of [η̃] = π∗[η] ∈ H3(T 3 ×X) for
the metric gφωt

and ν̃t the harmonic representative of [ν̃] = π∗[∗φη] ∈ H4(T 3 ×X),
we see that

η̃t = dθ1 ∧ α1,t + dθ2 ∧ α2,t + dθ3 ∧ α3,t,

ν̃t = −dθ2 ∧ dθ3 ∧ α1,t − dθ3 ∧ dθ1 ∧ α2,t − dθ1 ∧ dθ2 ∧ α3,t

where αj,t is the harmonic representative of [αj] ∈ H2(X) for the hyperkähler
metric associated with ωt. In particular, the lift of the exact part of 2(hd · η) to
T 3 ×X is

∂η̃t

∂t

∣∣∣∣∣
t=0

= dθ1 ∧ ∂α1,t

∂t

∣∣∣∣∣
t=0

+ dθ2 ∧ α2,t

∂t

∣∣∣∣
t=0

+ dθ3 ∧ α3,t

∂t

∣∣∣∣
t=0

and the lift of its co-exact part is

∂ν̃t

∂t

∣∣∣∣∣
t=0

= −dθ2 ∧ dθ3 ∧ ∂α1,t

∂t

∣∣∣∣∣
t=0

− dθ3 ∧ dθ1 ∧ α2,t

∂t

∣∣∣∣
t=0

− dθ1 ∧ dθ2 ∧ α3,t

∂t

∣∣∣∣
t=0

·

If we now let η = ηc and describe in a similar way the exact and co-exact parts
of ha · ηb, we see that the inner product of the exact parts of hd · ηc and ha · ηb

is equal to the inner product of their co-exact parts, and thus Eabcd(φD) = 0 (see
Remark 5.9). Similarly Ecabd(φD) = Ecbad(φD) = 0, which completes the proof of
the proposition.

177



Similarly to the case of T 7/F , one may prove in a more direct way that the
moduli space of torsion-free G2-structures on (T 3 × X)/F is a locally symmetric
space with nonpositive sectional curvature, using the period map for hyperkähler
surfaces. For lack of space we will not justify everything in detail but we want to
outline the idea.

The basic observation is that the moduli space of torsion-free G2-structures on
T 3 ×X can be seen as an open subspace of a homogeneous space. To introduce it,
let use denote by Hom+(R3, H2(X)) the space of linear maps R3 → H2(X) whose
image is a positive 3-plane inH2(X) ≃ R3,19, and E+ = Λ3

+R∗
3×Hom+(R3, H2(X)).

The idea behind this is that if we look at (6.5), φω should be identified with
(dθ1 ∧dθ2 ∧dθ3,

∑
dθi ⊗ [ωi]) ∈ E+. E+ is a homogeneous space under the action of

GL+(3)×SO0(3, 19), and there is a homogeneous fibration to the symmetric space
(GL+(3)/SO(3))×(SO0(3, 19)/SO(3)×SO(19)). Geometrically, the interpretation
of this fibration is clear: the first factor parametrises the flat metric on T 3, and
the second factor is the Grassmannian of positive 3-planes in R3,19 ≃ H2(X),
corresponding to the period of the hyperkähler metric gω.

It is not very difficult to prove that, under the identification of the moduli space
of torsion-free G2-structures on T 3 × X with an open subset of E+, the metric
G2 is isometric to a homogeneous metric on E+; and that there is a symmetric
metric on S2

+R∗
3 × Gr+(3,R3,19) which makes the map E+ → S2

+R∗
3 ×G+(3,R3,19)

a homogeneous fibration. Now if F is a finite group of isometries of T 3 ×X such
that the quotient (T 3 ×X)F = M has b1(M) = 0 (that is, if F acts without fixing
a non-zero vector in R3), the moduli space M of torsion-free G2-structures on M

will be identified with an open subset of EF
+ . The point is that EF

+ is a horizontal
submanifold of E+, and hence each connected component of the moduli space is
isometric to an open subset of (S2

+R∗
3 × Gr+(3,R3,19))F , which is totally geodesic

inside S2
+R∗

3 × Gr+(3,R3,19). We therefore recover the fact that M is in this case
a locally symmetric space of nonpositive sectional curvature.

6.3 Manifolds with restricted holonomy SU(3)

The case of (S1×CY 3)/F was less conclusive and we could not find formulas with a
clear geometrical interpretation, so we will just make a few very basic observations.
Not that in this case we must have F = Z2 since (up to a translation) the only
nontrivial isometry of the S1 factor acts by the antipodal map, that is θ 7→ −θ.
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6.3.1 Calabi–Yau threefolds. Let Y 6 be a compact simply connected manifold,
with a torsion-free SU(3)-structure (J, ω,Ω). Recall that the almost complex struc-
ture J is integrable and the metric gω = ω(·, J ·) is Kähler, Ricci-flat, and Ω is a
holomorphic volume form. Moreover, there is an induced torsion-free G2-structure

φ = dθ ∧ Ω + Re(Ω)

on S1 × Y . The space of harmonic 3-forms on S1 × Y decomposes as:

H 3(S1 × Y, φ) = dθ ∧ H 2(Y, gω) ⊕ H 3(Y, gω)

where we have further splittings:

H 2(Y, gω) = Rω ⊕ H (1,1)0
R (Y, gω),

H 3(Y, gω) = RRe Ω ⊕ R Im Ω ⊕ H (2,1)
R (Y, gω)

where H (1,1)0
R (Y, gω) is the space of harmonic real primitive (1, 1)-forms and simi-

larly H (2,1)
R (Y, gω) is the space of real harmonic forms of type (2, 1) + (1, 2). This

decomposition of the space of harmonic 3-forms on S1 × Y has the following in-
terpretation in terms of deformations of the product G2-structure:

• Deformations along the space Rdθ ∧ ω ⊕ RRe Ω ⊕ R Im Ω correspond to a
variation of the length of the circle factor, or a rescaling and rotation of
the holomorphic volume form. Hence this space corresponds to infinitesi-
mal deformations of the G2-metric by a mere rescaling of each factor of the
Riemannian product, which does not affect the space of harmonic forms.

• Deformations along dθ∧H (1,1)0
R (Y, gω) correspond to a variation of the Kähler

class, with fixed complex structure J on Y . The space of harmonic forms
varies along such deformations, but not the Hodge decomposition of the
cohomology in classes of type (p, q).

• Deformations along H (2,1)
R (Y, gω) correspond to changes of the real part of

the holomorphic volume form orthogonal to those changes corresponding to
multiplying Ω by a complex scalar. This amounts to deforming the complex
structure of Y with fixed Kähler class (see for instance [60]). Such deforma-
tions modify both the space of harmonic forms and the Hodge decomposition
into classes of type (p, q) of the cohomology of Y .
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6.3.2 Some remarks on the moduli spaces. Let us now consider a G2-manifold
(M,φ) with vanishing first Betti number and restricted holonomy SU(3). Then
there exists a simply-connected Calabi–Yau threefold (Y, J, ω,Ω) such that M has
a double cover π : M → S1 × Y , where the G2-structure π∗φ is a product as
described above. Moreover, M ≃ (S1 × Y )/Z2, where without loss of generality
we can assume that Z2 acts by θ ∈ R/LZ 7→ −θ ∈ R/LZ on the S1 factor and
by an isometry σ on Y . For Z2 to preserve φ, we therefore need σ∗ω = −ω and
σ∗ Re(Ω) = Re(Ω). Thus σ must be a anti-holomorphic isometry of Y (and in
particular σ∗ Im(Ω) = − Im(Ω)); moreover, it needs to be without fixed points
for the quotient M = (S1 × Y )/Z2 to be a smooth manifold. Conversely, if Y is
a simply connected compact Calabi-Yau threefold and σ a fixed-point-free anti-
holomorphic involution, then for any Kähler Ricci-flat 2-form ω the 2-form −σ∗ω

is Kähler Ricci-flat, and thus the cohomology class [ω] − σ∗[ω] ∈ H2(Y ) is Kähler
and therefore must contain a Kähler Ricci-flat metric ω′ with σ∗ω′ = −ω′. Before
proceeding further, let us give an example of a suitable pair (Y, σ).

Example 6.10. By the adjunction formula and the Lefschetz Hyperplane Theorem,
we can construct simply connected Calabi–Yau threefolds by intersecting trans-
versely a smooth quadric and a smooth quartic in CP5.

Let us consider the two hypersurfaces V1, V2 ⊂ CP5 defined as V1 = {[z1 : · · · :
z6]|

∑
i z

2
i = 0} and V2 = {[z1 : · · · : z6]|

∑
i z

4
i = 0}. These hypersurfaces are

smooth, and their intersection is transverse. To see this, define fk(z) = ∑
i z

2k
i

for z = (z1, . . . , z6) ∈ C6, and let z ̸= 0 such that f1(z) = f2(z) = 0. We want
to prove that ker dzf1 ⊕ ker dzf2 = C6. By contradiction, if this is not the case
then (z1, . . . , z6) must be colinear to (z3

1 , . . . , z
3
6) in C6. Since these vectors are

non-trivial, there exists λ ̸= 0 such that for any 0 ≤ i ≤ 6, either z2
i = 0 or z2

i = λ.
But since f1(z) = 0 it follows that dλ = 0, where d is the number of indices such
that zi ̸= 0, whence either d = 0 or λ = 0, contradicting our assumptions.

Let Y ⊂ CP5 be the intersection V1 ∩ V2: this is a simply connected Calabi–
Yau threefold. Moreover, it is endowed with an involution σ induced by complex
conjugation of the homogeneous complex coordinates of CP5. Since the real locus
of Y is empty, this involution has no fixed points. Hence (Y, σ) is a suitable pair.

Assuming that these conditions are satisfied, the space of harmonic 3-forms
H 3(M,φ) is isomorphic to H 3(S1 × Y, π∗φ)Z2 , and we deduce the following de-
composition of the space of harmonic 3-forms on M :

H 3(M,φ) ≃ Rdθ ∧ ω ⊕ RRe Ω ⊕ dθ ∧ H (1,1)0
R,− (Y, gω) ⊕ H (2,1)

R (Y, gω)σ
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where H (2,1)
R (Y, gω)σ ⊂ H (2,1)

R (Y, gω) is the subspace fixed by σ and and the sub-
space H (1,1)0

R,− (Y, gω) ⊂ H (1,1)0
R (Y, gω) is the −1 eigenspace of σ.

We can consider affine coordinates (xa) on a neighbourhood of φD in the moduli
space M of torsion-free G2-structures on M , and denote by x0 the coordinates
of φD . Although we could not give a fully explicit computation of the fourth
derivative of F , we can easily see that for certain choices of indices the terms
∇G

d Ξabc will automatically vanish:

Lemma 6.11. Let 0 ≤ a, b, c, d ≤ n be indices and assume that either one of the
following conditions is satisfied:

(i) At least one of the indices corresponds to a direction of deformation which
lies in Rdθ ∧ ω ⊕ RRe Ω, or

(ii) Not all indices correspond to directions of deformations lying in the same
space dθ ∧ H (1,1)0

R,− (Y, gω) or H (2,1)
R (Y, gω)σ.

Then Eabcd + Ecabd + Ecbad = 0 at x = x0.

Proof. If condition (i) is satisfied, then the result is immediate since one of the
indices corresponds to deforming π∗φ in a direction which does not modify the
space of harmonic forms. For condition (ii), there are only two cases to consider:
either three of the indices correspond to deformations lying in one of the spaces
dθ ∧ H (1,1)0

R,− (Y, gω) or H (2,1)
R (Y, gω)σ and the other index corresponds to a direc-

tion of deformation lying in the other space, or two of the indices correspond to
deformations lying in dθ∧H (1,1)0

R,− (Y, gω)σ and two of the indices correspond to de-
formations lying in H (2,1)

R (Y, gω)σ. A close examination of the expression of Eabcd

in terms of inner products of variations of harmonic forms shows that in all cases,
we can find a permutation of the indices a, b, c, d such that Eabcd, Ecabd and Ecbad

are computed by taking the L2-inner product of a 3-form of the type dθ∧κ, where
κ ∈ Ω2(Y ), with a 3-form of the type ρ ∈ Ω3(Y ). Such inner products vanish,
which yields the lemma.
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Appendix A

Finite subgroups of G2

In Chapter 6, we have shown that when F is a finite subgroup of G2 fixing no
line in R7, each connected component of (Λ3

+R∗
7)F is a symmetric space. In this

appendix we want to classify the possible geometries. There is a classification of
the conjugacy classes of finite subgroups of G2 [26, 48]; however, we will not need
the details of the full classification. As each connected component of (Λ3

+R∗
7)F is

isometric (up to a factor of 2) to (S2
+R∗

7)F , it is enough to understand the geometry
of the latter space. Moreover, if F ⊂ O(n) the description of (S2

+R∗
n)F is deter-

mined by the decomposition of R7 as a direct sum of irreducible representations
of F , due to the following consequences of Schur’s lemma:

(i) Assume that there is an orthogonal decomposition Rn = W1 ⊕ W2, where
W1,W2 are subrepresentations of F , such that W1 and W2 contain no com-
mon irreducible subrepresentations. Then (S2

+R∗
n)F is isometric to the prod-

uct (S2
+W

∗
1 )F × (S2

+W
∗
2 )F .

(ii) Assume that there is an orthogonal decomposition Rn = W1 ⊕· · ·⊕Wm such
that for i ̸= j the representations Wi and Wj are non-isomorphic irreducible
representations of F . Then (S2

+R∗
n)F is isometric to Rm equipped with a

Euclidean metric.

(iii) Assume that n = dk and that there is an orthogonal decomposition Rn =
V1 ⊕ · · · ⊕ Vk, where all the Vj are isomorphic irreducible representations
of dimension d, and there is (up to multiplication by a scalar) a unique
isomorphism between any two of them. Then (S2

+R∗
n)F is isometric to R ×

d · SL(k)/ SO(k) (i.e. the standard symmetric metric of SL(k)/ SO(k) is
multiplied by a factor d).

To classify the finite subgroups of G2 fixing no line in R7, it will be convenient
to adopt various points of view on positive forms. A first viewpoint, which is
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well-adapted when a group leaves invariant a line in R7, is to write R7 = C3 ⊕ R,
with linear coordinates (z1, z2, z3, θ), where zj = xj + iyj. In this decomposition,
we can take the canonical positive form to be

φ = Re(dz1 ∧ dz2 ∧ dz3) + i

2

3∑
j=1

dzj ∧ dzj ∧ dθ (A.1)

In particular, any linear transformation which leaves invariant φ and the decom-
position R7 = C3 ⊕ R is either an element of SU(3) (if it fixes the θ-line) or the
composition of an element of SU(3) and the real endomorphism acting by complex
conjugation on C3 and by multiplication by −1 on the θ-line.

Another point of view, which is useful when we consider a subgroup of G2

leaving invariant a coassociative subspace in R7, is to write R7 = R4 ⊕ Λ2
+, where

Λ2
+ is the space of self-dual 2-forms for the standard orientation and inner product

of R4. Any linear transformation fixing φ and leaving the decomposition R7 =
R4 ⊕ Λ2

+ invariant can be identified with an element of SO(4), acting with the
natural representation on R4 and with the induced representation on Λ2

+. In
particular, any subgroup of G2 leaving invariant a coassociative subspace can be
identified with a subgroup of SO(4), and its action on R7 is determined by its
action on the coassociative subspace.

We first prove that there is, up to conjugacy, only one abelian subgroup of G2

fixing no line in R7:

Proposition A.1. Let F ⊂ G2 be an abelian subgroup such that (R7)F = 0. Then,
up to conjugation in G2, F ≃ Z3

2 is generated by α, β, σ acting by

α(z1, z2, z3, θ) = (−z1,−z2, z3, θ),
β(z1, z2, z3, θ) = (−z1, z2,−z3, θ),
σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).

Hence (S2
+R∗

7)F is isometric to a flat R7.

Proof. Since F is abelian and any orthogonal transformation in R7 has a non-trivial
eigenvector, the elements of F have a common eigenvector. Up to conjugacy, we
can write R7 = C3 ⊕ R with coordinates (z1, z2, z3, θ), and assume that F leaves
invariant the θ-line. Let F0 ◁ F be the subgroup of index 2 fixing this line. Then
F0 can be identified with an abelian subgroup of SU(3), and hence up to conjugacy
in SU(3) we can assume that there are homomorphisms ζ1, ζ2, ζ3 : F0 → U, where
U is the group complex numbers with unit modulus, such that ζ1ζ2ζ3 = 1 and any
α ∈ F0 acts by

α(z1, z2, z3, θ) = (ζ1(α)z1, ζ2(α)z2, ζ3(α)z3, θ).
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Let σ ∈ F\F0; since F0 has index 2 in F , the group F is generated by F0 and σ.
There exists a matrix A = (aij)1≤i,j≤3 in SU(3) such that

σ(z1, z2, z3, θ) = (
∑

a1jzj,
∑

a2jzj,
∑

a3jzj,−θ).

As F is abelian, ασα−1 = σ for any α ∈ F0, which is equivalent to the condition

ζi(α)ζj(α)aij = aij, ∀1 ≤ i, j ≤ 3. (A.2)

Let us prove that A must be a diagonal matrix. By contradiction, assume that this
is not the case, so that after an appropriate cyclic permutation of z1, z2, z3 we can
assume a12 ̸= 0. Then condition (A.2) imposes ζ1ζ2 = 1, and as ζ1ζ2ζ3 = 1 we have
ζ3 = 1. Since F fixes no line in R7, one of the coefficients a13, a31, a23, a32 must be
nonzero; otherwise F0 fixes the z3-plane and σ acts as a reflection on this plane
so F would fix a line in the z3-plane. By (A.2), we deduce that ζ1 = ζ2 = ζ3 = 1
so that F = Z2 is generated by σ. But σ is a rotation in R7 and therefore fixes a
line, and we have a contradiction.

Hence A is a diagonal matrix in SU(3). Let λ1.λ2, λ3 ∈ U be its eigenvalues;
in particular λ1λ2λ3 = 1. Thus there is a choice of square roots λ1/2

j such that
λ

1/2
1 λ

1/2
2 λ

1/2
3 = 1. Hence the linear change of coordinates

(z1, z2, z3, θ) → (λ1/2
1 z1, λ

1/2
2 z2, λ

1/2
3 z3, θ)

is in G2, and in these coordinates σ acts as

σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).

Now condition (A.2) implies that ζ2
i = 1 for all i, and together with the fact that

ζ1ζ2ζ3 = 1 and the fact that F fixes no line in R7, we deduce that F0 ≃ Z2
2 is

generated by α, β acting as

α(z1, z2, z3, θ) = (−z1,−z2, z3, θ),
β(z1, z2, z3, θ) = (−z1, z2,−z3, θ).

Thus F ≃ Z3
2 is generated by α, β, σ. In particular, R7 decomposes as the direct

orthogonal sum of 7 irreducible representations of dimension 1, and it is easy to
see that they are all non-isomorphic. Thus (S2

+R∗7)F is the maximal flat totally
geodesic submanifold of S2

+R∗
7 formed by the inner products that are diagonalisable

in this decomposition.
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Next we classify the possible types of decomposition of R7 into irreducible
representations for the action of a finite nonabelian subgroup of G2. If we identify
R7 with the imaginary part of the space of octonions, then a positive form is
essentially dual to the cross-product. In particular, if W is a subrepresentation
of F then the space generated by the cross products of elements of W is also F -
invariant. Thus if R7 contains a subrepresentation W of F of dimension 2, then
the line generated by the cross-product of the elements of a basis of W is also
invariant under F . The only possibilities compatible with these constraints are
the following:

Proposition A.2. Let F be a finite nonabelian subgroup of G2 fixing no line in
R7. Denote by L1, L2, . . . the non-isomorphic 1-dimensional representations of F ,
by P1, P2, . . . , the 2-dimensional non-isomorphic irreducible representations of F ,
and by V k

1 , V
k

2 , . . . the (k ≥ 3)-dimensional irreducible representations. Then the
orthogonal decomposition of R7 into irreducible subrepresentations is either one of:

1. R7 = V 7
1 .

2. R7 = V 6
1 ⊕ L1.

3. R7 = V 4
1 ⊕ V 3

1 .

4. R7 = V 4
1 ⊕ P1 ⊕ L1.

5. R7 = V 4
1 ⊕ L1 ⊕ L2 ⊕ L3.

6. R7 = V 3
1 ⊕ V 3

2 ⊕ L1.

7. R7 = P1 ⊕ P2 ⊕ L1 ⊕ L2 ⊕ L3.

8. R7 = P1 ⊕ P1 ⊕ L1 ⊕ L2 ⊕ L3.

9. R7 = P1 ⊕ P2 ⊕ P3 ⊕ L1.

10. R7 = P1 ⊕ P1 ⊕ P2 ⊕ L1.

11. R7 = P1 ⊕ P1 ⊕ P1 ⊕ L1.

Moreover, in cases 8, 10 and 11 the only automorphisms of the representation P1

are (real) homotheties.
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Proof. If there is a subrepresentation W of dimension 5, then its orthogonal space
W⊥ is an invariant subspace of dimension 2, and looking at the cross-product W
must contain a subrepresentation of dimension 1. Hence R7 has no irreducible
subrepresentation of dimension 5. Moreover, any two one-dimensional subrepre-
sentations must be non-isomorphic, otherwise the cross-product would yield a fixed
line in R7. Therefore, cases 1 to 5 enumerate the possibilities when there is an
irreducible subrepresentation of dimension at least 4. Since we assumed F to be
nonabelian, R7 cannot be direct sum of representations of dimension 1, and thus
the cases left are when the dimension of the largest irreducible subrepresentation
is 2 or 3.

Suppose it is 3. If there is a subrepresentation of dimension 2, then there must
be one of dimension 1 as well by cross-product. For the same reason, if there are
two one-dimensional subrepresentations then there must be at least a third one.
Finally, if there are two 3-dimensional irreducible subrepresentations they cannot
be isomorphic for determinant reasons. Hence the possibilities are case 6 in the list
and R7 = V 3

1 ⊕ L1 ⊕ L2 ⊕ L3 ⊕ L4. We want to rule out the second possibility. In
this case, we can assume after changes the indices that V 3

1 ⊕ L1 is a coassociative
space; thus we can write R7 = V 3

1 ⊕ L1 ⊕ Λ2
+(V 3

1 ⊕ L1)∗. We want to prove that
F acts irreducibly on Λ2

+(V 3
1 ⊕ L1), thus reaching a contradiction. Let us take

linear coordinates x1 on L1 and (y1, x2, y2) on V 3
1 . Then there is a homomorphism

A : F → O(3) such F acts by A on V 3
1 ≃ R3 and by detA on L1 ≃ R. Using the

linear coordinates (θ1, θ2, θ3) on Λ2
+(V 3

1 ⊕ L)∗ associated with its standard basis,
we see that F acts on Λ2

+(V 3
1 ⊕ L)∗ by det(A) · A, which is an irreducible action.

Hence only case 6 can occur.
Now suppose all the irreducible subrepresentations of F contained in R7 have

dimension 1 or 2, and that at least one has dimension 2. Then, besides cases 7–8,
there is the possibility that R7 decomposes as P1 ⊕ L1 ⊕ L2 ⊕ L3 ⊕ L4 ⊕ L5. But
after changing the indices, we could assume that P1 ⊕L1 is associative, and hence
its orthogonal R ⊕ R ⊕ R ⊕ R would be coassociative. As F is determined by its
action on the coassociative subspace, this would force F to be abelian, so in fact
this case cannot occur.

It remains to prove our claim about the automorphisms of P1 in cases 8, 10 and
11. In each of these cases, the direct sum of two copies of P1 ⊕P1 is a coassociative
subspace of R7, and hence F can be identified with a finite subgroup of O(2) acting
in the same way on each component P1 ≃ R2. Since we assumed that F is not
abelian it must contain a reflection, and therefore F is isometric to a dihedral
group D2n for some n ≥ 2. Now the claim follows from the fact that the only
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automorphisms of the natural representation of the dihedral group D2n on R2 are
precisely the real homotheties.

We now give examples and more details on each case in the list:

Cases 1–5: In cases 1 to 5, no two irreducible subrepresentations are isomorphic
and thus (S2

+R∗
7)F is isometric to Rm, where m is the number of irreducible sub-

representations. All of these cases do occur for some finite subgroup of G2. For
case 1, there are finite subgroups of G2 acting irreducibly on R7; for instance there
is one of order 168 which is isomorphic to PSL(2, 7) [26, 48]. The second case
can be realised by taking a group of the form F = G ⋊ Z2, generated by a finite
subgroup of SU(3) acting irreducibly on C3 and the real automorphism of complex
conjugation (at least for a good choice of G; but a finite group of SO(3) acting
irreducibly on R3, seen as a subgroup of SU(3), would do the trick with F = G×Z2

in that case).
It remains to see that cases 3, 4 and 5 can occur as well. Thus we seek a

finite subgroup of SO(4), acting irreducibly on R4, such that the induced action
on Λ2

+ is either irreducible (for case 3), or has one irreducible subrepresentation
of dimension 2 (for case 4), or has three one-dimensional subrepresentations of
dimension 1 (for case 5). It is more convenient to consider the double cover Spin(4)
of SO(4), which is isomorphic to SU(2)− × SU(2)+, where SU(2)− fixes Λ3

+ and
SU(2)+ acts on Λ2

+ in a way that realises the double cover of SO(3). Now take
any finite subgroup G− of SU(2)− acting irreducibly on R4 (for instance the group
of order 8 generated by i, j, k seen as unit quaternions), and G+ a finite subgroup
of SU(2)+. Then let G− × G+ ⊂ Spin(4) and let F be its image in SO(4); it acts
irreducibly on R4 since G− does, and its action on Λ2

+ is determined by the choice
of G+. For case 3, one can take G+ to be the lift in SU(2) of a finite group of
SO(3) acting irreducibly on R3. Up to conjugacy, there are three such groups: the
chiro-tetrahedral, chiro-octahedral and chiro-icosahedral groups [28], respectively
corresponding to the group of rotations leaving invariant a regular tetrahedron, a
regular octahedron or a regular icosahedron in R3. For case 4, we can take G+ to
be the lift in SU(2) of a dihedral group D2n for some n ≥ 3, and for case 5 we can
choose G+ as the lift in SU(2) of the dihedral group D4 ≃ Z2

2.

Case 6: Let us assume that V 3
1 ⊕ L1 is coassociative. In the proof of the previous

proposition, we have seen that there is a homomorphism A : F → O(3) such that
F acts by A on V 3

1 ≃ R3, by det(A) on the invariant line and by det(A) · A on
V 3

2 ≃ R3. Hence (S2
+R∗

7)F is isometric to a flat R3, and F can be identified with a
subgroup of O(3) acting irreducible on R3 without preserving the orientation. As
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in the case of the finite subgroups of SO(3), there are (up to conjugacy) three such
groups: the holo-tetrahedral, holo-octahedral and holo-icosahedral groups. They
respectively correspond to the full group of orthogonal transformations leaving
invariant a regular tetrahedron, a regular octahedron or a regular icosahedron
[28].

Cases 7–8: The case where the two 2-dimensional irreducible subrepresentations
are non-isomorphic occurs for instance when considering the action of the dihedral
group D4n, for some n ≥ 3, acting on R7 = C3 ⊕ R by two generators α, β:

α(z1, z2, z3, θ) = (e iπ
n z1,−e− iπ

n z2,−z3, θ),
σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).

In case 7, (S2
+R∗

7)F is isometric to a flat R5.
When the two 2-dimensional representations are isomorphic, we have seen that

F is isometric to a dihedral group and that the only automorphisms of P1 are
homotheties. Thus we deduce that (S2

+R∗
7)F is isometric to R4 ×2·(SL(2)/O(2)) ≃

R4 × H(−1/4), where the metric on the hyperbolic plane H is normalised to have
constant sectional curvature −1/4. It is easy to see that up to conjugacy the only
possibility is D8, generated by α, σ acting on R7 in the following way:

α(z1, z2, z3, θ) = (iz1, iz2,−z3, θ),
σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).

(A.3)

Cases 9–11: If all the 2-dimensional representations are mutually non-isomorphic,
then (S2

+R∗
7)F is isometric to a flat R4. For any pair of integers n1, n2 ≥ 3, an

example of such action for a finite group is (Cn1 × Cn2) ⋊ Z2, generated by three
elements α, β, γ acting by:

α(z1, z2, z3, θ) = (e
2iπ
n1 z1, z2, e

− 2iπ
n1 z3, θ),

β(z1, z2, z3, θ) = (z1, e
2iπ
n2 z2, e

− 2iπ
n2 z3, θ),

σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).

Another possibility is when exactly two representations of dimension 2 are
isomorphic, in which case (S2

+R∗
7)F is isometric to R3 × 2 · (SL(2)/ SO(2)) ≃ R3 ×

H(−1/4). One can easily see that, up to conjugacy, the only possibility is F ≃ D2n,
where n ≥ 5, acting with two generators α, σ as

α(z1, z2, z3, θ) = (e 2iπ
n z1, e

2iπ
n z2, e

− 4iπ
n z3, θ),

σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).
(A.4)
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The last possibility is when all of the dimension 2 subrepresentations are iso-
morphic. In that case, (S2

+R∗
7)F is isometric to R2 × 2 · (SL(3)/ SO(3)). Up to

conjugacy in G2, the only possibility for a finite group is D6 acting with two
generators α, σ as

α(z1, z2, z3, θ) = (e 2iπ
3 z1, e

2iπ
3 z2, e

2iπ
3 z3, θ),

σ(z1, z2, z3, θ) = (z1, z2, z3,−θ).
(A.5)

Gathering the previous results we finally obtain:

Proposition A.3. Let F be a finite nonabelian subgroup of G2 fixing no line in
R7. Then (S2

+R∗
7)F is isometric to one of the following:

1. A flat Rm, where m = 1, 2, 3, 4 or 5.

2. R3 × H(−1/4), in which case F ≃ D2n for some integer n ≥ 5, and up to
conjugacy F has two generators α, σ acting as (A.4).

3. R4 × H(−1/4), in which case F ≃ D8, and up to conjugacy F has two
generators α, σ acting as (A.3).

4. R2 × 2 · (SL(3)/ SO(3)), in which case F ≃ D6, and up to conjugacy F has
two generators α, σ acting as (A.5).
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