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Abstract

The overarching theme of the present dissertation is the geometry of compact Go-
manifolds and their moduli spaces. This thesis can be roughly divided into two
parts: the first one is concerned with the spectral properties of twisted connected
sums, whilst the second one studies the geometry of Go-moduli spaces.

In the first part, we prove a deformation theorem allowing to construct torsion-
free Go-structures with C*-estimates (for any k > 1), and use it to deduce improved
estimates for the twisted connected sum construction. We then study the map-
ping properties of differential operators in ‘neck-stretching’ problems, where two
asymptotically cylindrical manifolds are glued to form a family of compact man-
ifolds containing a cylindrical neck region whose length is stretched to infinity.
In this limit, we construct approximate Fredholm inverses for a large class of
‘adapted’ elliptic operators, with good control on the growth of their norm. Our
results are then refined in the case of the Laplacian operator, and we derive a
precise description of the asymptotic behaviour of its lower spectrum. Specified
to twisted connected sum Gy-manifolds, our results give mathematical support for
the so-called swampland distance conjecture in physics.

The second part of this dissertation is concerned with the geometry of the mod-
uli space . of torsion-free Go-structures on a compact Go-manifold M, endowed
with the Riemannian metric ¢ induced by the volume-normalised L?-inner prod-
uct. When the first Betti number of M vanishes, this metric has the remarkable
property of being Hessian and admits a global potential .%. Using this observation,
we derive a formula for the energy (the integral of the squared velocity) of a path
in .. This allows us to give sufficient geometric and topological conditions for
a path of torsion-free Go-structures on M to have finite energy and length in the
moduli space. By considering paths that degenerate to a singular limit, we deduce
that Go-moduli spaces may be incomplete: indeed we show that Go-manifolds con-
structed by the generalised Kummer construction, by resolution of isolated conical
singularities or by the Joyce-Karigiannis construction all have incomplete moduli
spaces.

In the final chapters, we study the local geometry of .#Z and give an alternative
description of the metric ¢ through the introduction of a new notion of period
map for Go-manifolds, mimicking the classical notion of period map introduced by
Griffiths for Kahler manifolds. More specifically, we show using Hodge theory that
there is a natural immersion ® : .#Z — ® of the moduli space into a homogeneous
space © diffeomorphic to GL(n + 1)/({£1} x O(n)), where n +1 = v*(M), in
such a way that ¢4 coincides with the restriction of a (degenerate) homogeneous
quadratic form defined on ®. Motivated by the question of understanding the
curvature of ¢, we also compute the derivatives of the potential function .%# up to
order 4 and relate our formulas to the second fundamental form of ®(.#Z) C D.
In particular, we deduce that the map ® is a totally geodesic immersion and ¢
is locally symmetric when .# = T7/T" or M = (T? x K3)/T. Finally, we use the
theory of exterior differential systems to give some complements on the properties
of the map ® and relate it to the more classical notion of period map for Go-
manifolds, as a Lagrangian immersion of .# into H*(M) & H*(M).
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Introduction

Historical perspective and motivation

Riemannian holonomy groups. One of the cornerstones of modern geome-
try is the concept of holonomy, for the holonomy group of a Riemannian mani-
fold detects the presence of additional geometric structures. For non-symmetric
spaces, the classification of the possible irreducible holonomy groups was carried
out by Berger in 1955 [11], with a later amendment by Aleeksevkii [5]. Besides
generic Riemannian metrics (with holonomy SO(n)) and Kéahler metrics (U(n)),
this classification contains five special cases: three infinite families corresponding
to Ricci-flat Kéhler/Calabi-Yau (SU(n)), hyperkéhler (Sp(n)) and quaternionic-
kiahler (Sp(1).Sp(n)) metrics; and the two exceptional Lie groups Go C SO(7) -
which will be the main focus of this thesis — and Spin(7) C SO(8).

On the one hand, the study of Calabi-Yau and hyperkahler metrics lies at
the intersection of Riemannian, complex and algebraic geometry, and since Yau'’s
solution of the Calabi conjecture in 1978 [123] giving a necessary and sufficient
condition for the existence of such metrics on a compact Kéahler manifold the
connections between these fields have been exploited to yield a very rich theory.
In addition, quaternionic-kahler metrics can also be related to complex geometry
using twistor methods.

On the other hand, the study of metrics with exceptional holonomy is only
amenable to differential-geometric techniques and would turn out to be more dif-
ficult. The identification of the parallel tensors associated with the exceptional
holonomy groups goes back to Bonan [14] in 1966, who also proved that metrics
with holonomy Go or Spin(7) are automatically Ricci-flat. But it took another
two decades before the first construction of metrics with exceptional holonomy
due to Bryant in the local setting [16], shortly before the first complete examples
were exhibited by Bryant and Salamon using cohomogeneity one techniques [19].
The compact case required the introduction of completely different methods, and

the first examples are due to Joyce [63, 64, 65] who developed a general gluing-



perturbation framework in order to resolve the singularities of certain flat Go- or
Spin(7)-orbifolds.

Over the past three decades, these construction techniques have been extended
and refined, but the fundamental principles on which they rely remain unchanged.
In the noncompact setting, we now know of a number of complete exceptional
holonomy manifolds with various asymptotic behaviours (due to Foscolo-Haskins—
Nordstrom for Go [42, 43] and more recently Cavalleri for Spin(7) [22]), which all
rely on dimensional reduction methods (cohomogeneity one or higher). In the
compact case, several new constructions of Go-manifolds have been elaborated:
the twisted connected sum, initially due to Kovalev [80] and then improved by
Corti-Haskins—Nordstrom—Pacini [29, 30] and extended by Crowley and Nord-
strom [34, 97]; and other resolution methods due to Karigiannis [72] and Joyce-
Karigiannis [68], although in these cases it remains a challenge to find appropriate
building blocks. All of these constructions rely on Joyce’s deformation theorems
[66, Ch. 11] and produce compact exceptional holonomy manifolds close to a de-
generate limit. Contrary to the Calabi—Yau case, we do not know which compact
manifolds admit metrics with holonomy Gy or Spin(7): if certain necessary topo-
logical conditions are known, they are expected to be far from sufficient. More
generally, our understanding of exceptional geometry so far mostly relies on spe-
cific constructions, and there is not a well-established theory comparable to what
is available for the study of special metrics in complex geometry.

But despite these differences, there are deep connections between Calabi—Yau,
hyperkédhler and exceptional geometries [37]. This is manifest in the sequence of
inclusions of holonomy groups Sp(1) = SU(2) C SU(3) € Gy C Spin(7), which
implies that the different types of geometries can be related through dimensional
reduction. For this reason, metrics with holonomy SU(2) or SU(3) often arise as
building blocks in the construction of exceptional holonomy metrics, and under-
standing them remains a central topic in exceptional geometry. In addition, there
is an expectation that certain phenomena arising in Calabi—Yau geometry should
have counterparts in G and Spin(7)-geometry. This general idea has been adapted
in a variety of ways and is at the origin of a lot of research in the field. Besides
the geometrical intuition, it is partly motivated by the fundamental role played by
special holonomy manifolds for quantum gravity theories in physics, especially for

Calabi-Yau and Gg-manifolds in string and M-theory.

Special holonomy and quantum gravity theories. From a historical per-
spective, the inception of string theory took place in the 1960s as a candidate

theory of strong interactions, in an attempt to account for the growing number



of particles that were regularly discovered in experiments at the time. As such it
was undermined by several problems, among which the presence of a massless spin
two particle in the spectrum of the closed string which did not correspond to any
known particle. With the development of quantum chromodynamics in the late
1960s, string theory was discarded as a possible description of strong interactions
but soon became a candidate theory for quantum gravity, interpreting the mass-
less spin two particle as the graviton [104] — that is, the particle mediating the
gravitational interaction.

The basic idea of string theory is to replace point-like particles by small ‘strings’,
which sweep out 2-dimensional surfaces by moving through a D-dimensional space-
time. Despite the fact that it naturally contains the graviton, string theory un-
fortunately fails to reproduce the basic observation that space-time has dimension
4. Indeed, bosonic string theory is only consistent in a space-time of dimension
D = 26. With the addition of fermions, the critical dimension can be brought
down to D = 10, which is arguably better than 26 but not quite as good as 4.

To solve this conundrum, physicists introduced the idea of ‘compactification’.
That is, one assumes that the ambient space-time is a Riemannian product R*! x
MP=4 where MP~* is a compact Riemannian manifold which should be ‘very
small” compared with the length scale that can be reached by experiment. Con-
sistency conditions require M to be Ricci-flat and to admit parallel spinors, and
hence in string theory M® must be a Calabi-Yau threefold (D = 10). During the
1990s, Witten also made the conjecture that there should exist an 11-dimensional
so-called M-theory (whose precise formulation is yet to be found) unifying the
different types of string theories through various limits [122]. In this theory, the
internal manifold M7 must be a Gy-manifold.

Even though in quantum gravity theories the internal manifold cannot be di-
rectly detected, the idea is that its geometry and topology should govern the low-
energy physics in four dimensions. One instance of this principle is the Kaluza—
Klein reduction, wherein the fields in the D-dimensional action can be decomposed
in a Hilbert basis and integrated out along M, thus obtaining a countable family
of physical modes on R*!. For this reason, the eigenvalues of geometric operators
such as the Laplacian acting on differential forms on M have the physical inter-
pretation of a mass spectrum®. For this prescription to be realistic, one usually
only keeps the massless modes? to have only a finite number of particles, the other

ones being deemed too heavy to be observed at low energies.

!'More accurately, in the case of the Laplacian the eigenvalues correspond to squared masses.
2 According to the Standard Model of particle physics, particles acquire a mass through the Higgs
mechanism, but their ‘bare mass’ (the fundamental mass parameter in the Lagrangian) is zero.



The swampland programme. Due to the large number of topological types of
known Calabi-Yau and Gy manifolds, there is a huge number of possible back-
ground vacua for string and M-theory, leading to an equally huge number of pos-
sible low-energy field theories in 4 dimensions. They form what is known as the
(string or M-theory) landscape. This raises a question as to whether any quantum
field theory in 4 dimensions can be obtained from string/M-theory (or any other
quantum gravity theory) by choosing the right internal manifold, in which case
these theories would not have any predictive power for low-energy physics.

It is now widely believed by physicists that this should not be the case, and
that in some sense most field theories should not occur as the low energy limit
of a theory of quantum gravity: such field theories have been collectively termed
the swampland. In order to give more substance to this idea, one would need to
give precise criteria in order to distinguish the theories forming the landscape from
those belonging to the swampland. This idea was originally formulated by Vafa in
2005 [115] and is at the origin of what is called the swampland programme.

Since then, this programme has received a lot of attention in the physics com-
munity and many criteria have been proposed, backed by arguments with various
levels of mathematical rigour (see the reviews [15, 101]). An important point is
that all criteria must be formulated purely in terms of the low energy field the-
ories themselves, without reference to a particular quantum gravity theory. This
is crucial for the low energy field theories can usually be given a precise defini-
tion, even though quantum gravity theories are not mathematically well-founded.
Hence some of the predictions of the swampland programme yield interesting and
well-defined mathematical questions, which can be studied in their own right.

Part of the work of this thesis was motivated by a bulk of conjectures known
as the swampland distance conjectures, made by Ooguri and Vafa [98], which con-
cern the moduli spaces of the internal manifolds (e.g. Calabi—Yau manifolds in
string theory or Go-manifolds in M-theory). Physically, they represent the moduli
spaces of parameters in the low-energy theory, and they are endowed with a natural
Riemannian metric (which is to be interpreted as a kinetic term in the action func-
tional). For Calabi—Yau manifolds, this metric coincides with the Weil-Petersson
metric on the moduli space of complex structures and with the Hodge metric on the
Kaéhler cone. On the other hand, for Go-manifolds the relevant metric to consider
is the volume-normalised L*-metric [52].

The main prediction of the swampland distance conjectures, which is often
alone called the swampland distance conjecture, is that the low-energy effective

field theory is expected to break down at infinite distance in the moduli space.



More precisely, it is conjectured that infinite-distance limits in the moduli space
are related to the appearance of an ‘infinite tower of light states’, with masses
decaying exponentially in the moduli space distance. In more geometric terms,
this means that along a deformation of the internal special holonomy manifold
which does not remain in a bounded region of the moduli space, an infinite number
of the mass parameters determined by the internal geometry (for instance through
the Kaluza—Klein reduction, but this is not the only possible source of physical
states) should decay to zero at the same rate. My understanding is that physicists
expect that along such deformations, the usual prescription of keeping only the
massless states in the low energy limit cannot be consistent, since an arbitrarily
large number of massive modes can be made lighter than any fixed ‘experimental’
energy scale. In such degenerate limits, the right low-energy description should
therefore be a different theory, and this should explain why the different types of
quantum gravity theories are related by dualities.

The swampland distance conjecture has been mainly studied on Calabi—Yau
moduli manifolds (see for instance [31, 53]), and the eigenvalues aspects are notably
backed by numerical evidence [8]. The question of studying this conjecture from
a more analytical point of view was one of the motivations for my first paper
[82], which in particular gave more mathematical grounding for the conjecture by
studying the spectral properties of twisted connected sum Go-manifolds. These
results are exposed in Chapters 2 and 3, and a more detailed overview will be
given in the next section of this introduction.

In their original article, Ooguri—Vafa also made a number of conjectures on
the asymptotic behaviour of the moduli space metric and its curvature, but they
seem too strong to hold in general and may be disproved in some cases (see next
paragraph). Nevertheless, this provides some motivation for trying to understand
the geometry of the moduli spaces of special holonomy manifolds, endowed with
their natural Riemannian metric, and the properties of the associated distance.
An especially interesting related question is to understand whether the moduli
spaces are complete and to distinguish finite-distance limits from infinite-distance
ones. These questions have been well-studied in complex geometry for Calabi—Yau
moduli spaces, but comparatively the moduli spaces of manifolds with exceptional

holonomy are poorly understood.

Moduli spaces. The best understood moduli space of special holonomy man-
ifolds is the moduli space of hyperkédhler metrics on the K3 surface (holonomy
SU(2)). The global Torelli theorem identifies this moduli space with the comple-

ment of a countable union of codimension 3 submanifolds in the symmetric space



SO00(3,19)/(SO(3) x SO(19)) [111] via the period map. Therefore, the natural
moduli space metric is locally symmetric and nonpositively curved. Moreover,
the moduli space of hyperkahler K3 surfaces is incomplete, and it is known that
finite-distance limits can geometrically be interpreted as degenerations to compact
hyperkéahler orbifolds [76].

The situation for the moduli spaces of Calabi—Yau metrics in higher dimensions
is more complicated, and one usually studies separately the Kahler and complex

3. Because of Yau’s theorem, the moduli space of Ricci-flat Kéhler

deformations
metrics on a fixed complex Calabi—Yau manifold can be identified with the cone of
Kahler classes, which can be explicitly described in terms of the intersection form
and the classes of analytic cycles [36]. The Hodge metric on the Kéhler cone turns
out to be Hessian and is entirely determined by the intersection form: hence this
is a purely topological object. It is conjectured that this metric is nonpositively
curved, and this has been proved for certain classes of Calabi—Yau threefolds [121],
but to the authors’ knowledge the general case is still open. In terms of distances,
it is not difficult to prove that cohomology classes which are big and nef correspond
to finite-distance limits at the boundary of Kéhler cones [92], and hence that the
Hodge metric may be incomplete. Such finite-distance limits can be interpreted
geometrically: the underlying Calabi—Yau metrics associated with a deformation
of the Kéhler class to a big class degenerate to a Kahler current which can be
seen as a singular Calabi—Yau metric on a complex analytic space with canonical
singularities [27, 113].

For the deformations of the complex structure of Calabi—Yau manifolds, the
main tool used to understand the moduli spaces is the notion of period map orig-
inally introduced by Griffiths [49, 50], which determines the Weil-Petersson met-
ric in a natural way [108, 112]. There is a rich theory studying the asymptotic
behaviour of the period map [105], which was used by Wang to prove that finite-
distance limits along one-parameter families of Calabi—Yau manifolds correspond
to degenerations to varieties with canonical singularities [117]. The relation be-
tween the Weil-Petersson metric and the period map was axiomatised by Lu and
Sun [90], who deduced various results about the volume and the first Chern class
of the moduli spaces [91]. Regarding the local geometry, it was for a long time
expected that the scalar curvature of the Weil-Petersson metric should be non-

positive at least near infinite-distance limits (see for instance [118], and this also

3Both types of deformations are supposed to be in some sense dual to each other, according to
mirror symmetry.



motivated one of the conjectures of Ooguri and Vafa [98]), but eventually it was
disproved for certain Calabi—Yau threefolds [114].

By contrast, much less is known about Go-moduli spaces. Joyce proved that the
moduli space of torsion-free Go-structures on a compact 7-manifold M is a smooth
manifold of dimension b*(M)? (when it is nonempty), locally modelled on an open
cone in H?(M) [64]; thus the moduli space is even an affine manifold. Moreover,
it is naturally immersed as a Lagrangian submanifold of H3(M) & H*(M) [65].
But these results are purely local, and little is known about the global structure
of the moduli space, partly because of the lack of an analogue of Yau’s theorem
[123] in Go-geometry. Nevertheless, there have been some recent advances on
the topology of the moduli spaces: it was proved by Crowley—Goette—Nordstrom
that the quotient of the space of torsion-free Go-structures by the full space of
diffeomorphisms is disconnected in some cases [33]. Even more recently, Crowley—
Goette—Hertl proved that the quotient of the space of torsion-free Go-structures
by the group of diffeomorphisms isotopic to the identity may be non-aspherical
(32].

From a geometric perspective, Hitchin first noticed that the Hessian of the vol-
ume functional is non-degenerate [60], and when b (M) = 0 it defines a metric with
Lorentzian signature on the moduli space. Around the same time, it was pointed
out in the physics literature that by taking the logarithm of the volume one ob-
tains a potential function with definite Hessian, which coincides (up to a constant
factor) with the volume-normalised L?-metric [10, 54, 55, 61]. This is reminiscent
of the Hodge metric on Kahler cones, but the high degree of nonlinearity of the
potential function makes the geometry of Go-moduli spaces much more difficult to
understand. Grigorian and Yau [52] obtained formulas for the curvatures of the
moduli space metric, which are unfortunately difficult to interpret geometrically.
Nevertheless, an interesting feature of these formulas is their formal similarity with
the equations describing the geometry of the moduli spaces of complex structures
on Calabi—Yau threefolds. Further similarities were exhibited by the work of Ka-
rigiannis and Leung [73], who developed a notion of Intermediate Jacobians for
Go-manifolds.

More recent progress was made by the author in two articles [83, 84] concerning
both the distance aspects and the local geometry of the moduli spaces. These
results form Chapters 4 and 5 of the present manuscript. In the next section, we

shall give an overview of the results proved in this thesis and its organisation.

“4In his article, Joyce attributes the result to Bryant and Harvey in unpublished work. Indeed,
the result was announced in [16, p.561] in the case of simply connected manifolds.



Main results and organisation of the thesis

The present thesis is divided into 6 chapters. The first one contains background
material and sets the notations and conventions that will be used throughout. In
the first section, we briefly introduce the the fundamental concepts of holonomy;,
geometric structures and intrinsic torsion, and discuss the classification of Rie-
mannian holonomy groups and Berger’s list. Then in the second section we give a
self-contained exposition of the basics of Gy-geometry, spanning from the notion
of positive linear form on R” to Gy-manifolds and their moduli spaces. Most of the
material of this first chapter can be found elsewhere in the literature (for instance
in Joyce’s monograph [66]), with the exception of a few observations about the
linear algebra of positive forms in §1.2.1 which will be clear to the experts but for

which we could not find a reference.

Gluing constructions and neck-stretching. The following two chapters (2
and 3) form the most analytical part of the thesis and stem from the article [82]
by the author, which studies the analysis of differential operators for a certain
class of ‘neck-stretching’ problems. The original motivation for this came from
the swampland distance conjecture mentioned in the previous section. Indeed,
in the twisted connected sum construction of Go-manifolds, two asymptotically
cylindrical Gy-manifolds are glued together in order to form a family of compact
manifolds Mr endowed with a closed Ga-structure, ¢r, which can be perturbed
to a nearby torsion-free one, @7, in the limit where the length of the neck region
2T — oo; and this limit is at infinite-distance in the moduli space®. Hence it is
an interesting question to study the asymptotic behaviour of the spectrum of the
Laplacian operator of (M7, pr) and to interpret the presence of low eigenvalues in
geometrical terms.

The first technical difficulty is that @7 is only implicitly defined, and the orig-
inal analytical argument in the twisted connected sum construction only gives an
estimate ||@r — or|lco S €T, where § > 0 is small enough and T — oc. In par-
ticular, it does not give control on the derivatives of ¢, which would be needed
in order to approximate the behaviour of the Laplacian operator associated with
@r by the Laplacian associated with 7%, This problem is tackled in Chapter 2,
where we adapt Joyce’s general existence theorem for torsion-free Go-structures on

compact manifolds — which gives C°-estimates — to prove a deformation theorem

5This is because in this limit the volume goes to infinity; see §4.1.1 and also Lemma 4.18.
6For some purposes, C! or C?-estimates might be enough, but to be able to apply the analytical
tools developed in Chapter 3 it is more convenient to have C*-estimates for any k € N.



with C*-estimates for & > 1. This is an improvement and generalisation of an ar-
gument given by the author in the last section of [82]. Our theorem requires rather
strong hypotheses, but using an additional analytical result proved in Chapter 3
we can show that they are satisfied in the case of twisted connected sums, and
deduce improved estimates ||¢7 — or||cr < e7°7 for any k € N.

In the following chapter, we turn our attention to the analysis of the Laplacian
operator associated with ¢7. In fact, since this problem has nothing to do with Go,
we consider the more general setting of a family of compact Riemannian manifolds
(Mr, gr) obtained from the gluing of two asymptotically cylindrical manifolds.
Moreover, we will not specifically consider the Laplacian operator but a larger
class of differential operators Pr adapted to the geometry of this neck-stretching
problem, in a sense defined in §3.1.1. Our goal is to build an approximate Fredholm
inverse for the map induced by Pr on Sobolev spaces of sections, with good control
on the growth of its operator norm in the limit where T" — oc.

Our first task, which is carried out in Section 3.1, is to define good notions
of substitute kernels and cokernels, with a particular emphasis on the case where
the model operator on the cylinder admits 0 as an indicial root. Under a certain
assumption justified in §3.1.2, we develop in Sections 3.2 and 3.3 a general method
to construct a Fredholm inverse of Pr on the complement of the substitute kernel
and cokernel, and show that its norm (as an operator between Sobolev spaces of
sections) grows at most polynomially with 7". Finally, in Section 3.4 our method
is refined in order to derive precise estimates for the asymptotic behaviour of the
lower spectrum of the Laplacian operator acting on differential forms in the neck-
stretching limit. Namely, we show that the asymptotic density of low eigenvalues
of the Laplacian Ay of (Mr, gr) is equivalent to the density of eigenvalues of the
Laplacian acting on the product Si; x X, where X is the cross-section of the
cylindrical neck which has length 27". Going back to our physical motivation, I
have been told by physicists that for twisted connected sum Gy-manifolds this
confirms the idea that M-theory should be dual to another theory compactified on
X, in the limit where the length of the neck goes to infinity.

Geometry of the moduli spaces. In the second half of this thesis, from Chap-
ter 4 to Chapter 6, we will be interested in the moduli space .# of torsion-free
Ga-structures of a compact Go-manifold M and the properties of the volume-
normalised L2-metric, denoted by ¢. A few basic facts about this metric, including
the observation that it is Hessian when b'(M) = 0, are explained in Section 4.1,

which also gathers various results which will be useful in the following chapters.



The rest of Chapter 4 is an extended version of [84], where the author proved
that Go-moduli spaces may be incomplete (even in the case of manifolds with
full holonomy). I was motivated by the corresponding statements for Calabi—Yau
moduli spaces: for both the Kéhler cone and the complex structure moduli space,
the asymptotic behaviour of the moduli space metric near the boundary seems
to detect something about the type of degenerations occurring, in so far as finite-
distance limits correspond to the formation of canonical singularities as opposed to
more singular degenerate limits. Moreover, in both cases there are incompleteness
criteria which may be proved without knowing anything about the underlying
Calabi-Yau metrics: they only take advantage of the special properties satisfied
by the moduli space metric.

For Gs-manifolds, one special property is that the metric ¢ is Hessian, and in
Section 4.2 we exploit this observation to derive a simple formula for the energy of
a path {¢;}e(o,1) of torsion-free Go-structures in the moduli space. This allows us
to find sufficient topological and geometrical conditions for its energy and length
to be finite, from which we deduce that the generalised Kummer Gy-manifolds
have incomplete moduli spaces. In the last section we discuss other incomplete-
ness criteria and prove the incompleteness of the moduli spaces for Karigiannis’
resolution of isolated conical singularities and the Joyce-Karigiannis construction
(cases which were not treated in [84]). We also mention some interesting open
questions for future study.

In Chapter 5, which is based on the paper [83], we study the local properties
of the metric ¥ and define a new notion of period map for Ge-manifolds with
vanishing first Betti number. In the first section, we compute the derivatives of the
potential function up to order 4 and derive some consequences for the curvatures of
the moduli spaces. In Section 5.2 we define a certain ‘twisted version’ of the Hodge
decomposition of M associated with a torsion-free Go-structure ¢ and show that
it defines an element in the homogeneous space ©® ~ GL(n + 1)/({£1} x O(n)),
where n + 1 = b3(M). In the following section we study the properties of the
induced map ® : .#Z — 2. We notably point out that this is an immersion, which
satisfies differential constraints similar to Griffiths’ notion of transversality for the
period map of Calabi—Yau manifolds, and that it determines the metric on the
moduli spaces in a natural way. More precisely, we show that ¢ is the pull back
under ® of a degenerate homogeneous quadratic form defined on ®. We also give
a necessary and sufficient condition for the immersion ®(.Z) C ® to be totally
geodesic: namely, it is totally geodesic if and only if the symmetric cubic form

known as the Yukawa coupling is a parallel tensor on .#Z. We then relate this
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condition to the formulas we obtained for the derivatives of the potential. Lastly,
in Section 5.4 we study the differential constraints satisfied by the period mapping
from the point of view of exterior differential systems, and relate our notion of
period map to the classical notion of Go-period map as a Lagrangian immersion
of A into H3(M) @& H*(M).

Finally, Chapter 6 is a small chapter mostly meant to complement the previous
one, where we make some remarks on the moduli spaces of compact Ggo-manifolds
whose restricted holonomy group is a proper subgroup of Gs and which have
vanishing first Betti number. We notably prove that, in the cases of T7/I" and
(T® x K3)/T', the Yukawa coupling turns out to be parallel and therefore the
period map is a totally geodesic immersion. We also make some brief comments
on the case of (S* x CY3)/T. In Appendix A, we also give a classification of the

possible geometries for the moduli spaces in the flat case.
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Chapter 1

Background

This chapter gathers some fundamental background material. The first section is
a brief overview of the concepts of geometric structure and holonomy, where we
also review the classification of Riemannian holonomy groups. Section 1.2 is an
introduction to the geometry of Go-manifolds, where we set the notations that
will be used throughout this dissertation and emphasize a few useful algebraic

properties of positive forms.

1.1 Geometric structures

1.1.1 Bundles and connections. Let M be a manifold (a second-countable
Hausdorff topological space endowed with an atlas of charts with smooth transition
functions) of dimension m. If E is a rank r vector bundle over M, a connection

on FE is a linear map V : Q(E) — Q(F) satisfying the so-called Leibniz rule:
V(fs)=df @ s+ fVs, VfeCO®(M), Vs QE).

There is a unique way to extend V to a collection of linear maps dy : Q*(E) —
QM 1(E) such that dy = V on Q°(E) and dy satisfies the following generalisation

of the Leibniz rule:
dy(wAn) = (dw) A+ (=DFw A (dyn), Yw € Q¥(M), ¥y € Q(E).

Using this Leibniz rule, it is easy to show that there exists a unique End(E)-valued
2-form Fy € Q%(End(E)), called the curvature of V, such that for any n € QF(E)
we have d&n = Fy An. When V is not flat, that is Fy # 0, then (Q°*(E), dy) fails
to be a chain complex.

More abstractly, one can think of connections in terms of the frame bundle
Z g of E, whose fibre over a point p € E is the manifold of linear automorphisms

E, ~ R". The group GL(r) acts on the right on E by post-composition, and this
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gives .Zp the structure of a GL(r)-principal bundle. Then the data of a connection
on FE is equivalent to an equivariant splitting of the tangent space T'-%g into
vertical and horizontal components, and the curvature of the connection measures
the failure of integrability of the horizontal distribution.

Given a connection V on E, one may associate to any piecewise C! path
v : [0,1] — M a parallel transport map P, : E,o — FEya1), which is a linear
isomorphism. In particular, when v is a loop based at p € M, P, is an auto-
morphism of the fibre £,. The set of such automorphisms forms a Lie subgroup
Hol,(V) C GL(E,), called the holonomy group of V based at p. After choosing
an identification of E, with R", Hol,(V) can be regarded as a subgroup of GL(r)
whose conjugacy class is independent of the choice of base point. For this reason,
one often calls any representative H of this conjugacy class the holonomy group of
V and drops the subscript p. The restricted holonomy group HolO(V) is by defi-
nition the identity component of Hol’(V). By a theorem of Ambrose and Singer
6], the curvature of a connection determines its restricted holonomy.

The importance of the notion of holonomy is best understood from the per-
spective of principal bundles. One can easily see that the holonomy group of a
connection V on F is contained (up to conjugacy) in a subgroup G C GL(r) if
and only if there exists a principal subbundle & C % with structure group G
which is invariant under parallel transport; that is, such that V can be reduced
to a connection on . Hence the holonomy group of a connection is the smallest
structure group to which it can be reduced.

An especially interesting case is when the subgroup G C GL(r) arises as the
stabiliser of a nontrivial element W in a linear representation W of GL(r). For such
a representation, we may construct the associated bundle Wg = (g x W)/ GL(r).
Then there is a one-to-one correspondence between the principal subbundles of .% g
with structure group G and the sections ¥ of W such that for any p € M, there
is an identification Wg, ~ W mapping 1, to . It follows that a connection V
restricts to a G-subbundle & C % if and only if the associated section 1 of W
is parallel (for the connection induced by V on Wg). To summarise, one might say
that the holonomy of a connection determines and is characterised by its parallel

tensors.

1.1.2 G-structures and intrinsic torsion. Let us now consider the special case
of the vector bundle £ = T'M, endowed with a connection V. We can define a
section Ty of the vector bundle A2T*M ® T'M, called the torsion of V, by

Ty(u,v) = Vo — Vyu—[u,v], Vu,veC®TM).
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The connection V is called torsion-free if Ty = 0. If a is a 1-form on M, one can
easily calculate that Va(u,v) — Va(v,u) = da(u,v) — a(Ty(u,v)) for all u,v €
C>°(TM). From this it follows that if V is torsion-free then the antisymmetric
part of Va coincides with da (up to a combinatorial coefficient). This fact readily
generalises to differential forms of any degree; hence for torsion-free connections
parallel forms are automatically closed.

There is also a notion of torsion for geometric structures. Recall that if G is
a Lie subgroup of GL(m), a G-structure on M is a principal G-subbundle & of
Frv- 1t is called torsion-free if it admits a torsion-free connection. Alternatively,
if & is defined by a section ¢ of an associated bundle, then it is torsion-free if and
only if M admits a torsion-free connection for which 1 is parallel. The torsion-free
condition can often be interpreted as an integrability condition. For instance, in
even dimension a GL(m/2, C)-structure corresponds to an almost complex struc-
ture J, and it is torsion-free if and only if it is integrable, in the sense that it
is induced by an atlas of complex charts with holomorphic transition functions.
Along the same lines, a non-degenerate 2-form w is symplectic (closed) if and only
if the corresponding Symp(m) structure is torsion-free.

There is however a very useful case where the torsion-free condition is always
satisfied, which is that of O(m)-structures. Indeed, an O(m) structure on M is
just a Riemannian metric g and the fundamental theorem of Riemannian geometry
states that it admits a unique torsion-free connection, the Levi-Civita connection.
Unless otherwise stated, all notions of curvature, connection and holonomy for a
Riemannian metric will implicitly refer to its Levi-Civita connection.

For a proper subgroup G C O(m), the torsion-free condition becomes more
subtle to decipher. If & is a G-structure, it induces a Riemannian metric g (since
G C O(m)) and any connection on & must be compatible with g. Therefore,
& is torsion-free if and only if the Levi-Civita connection V9 of g reduces to a
connection on &. In general, this condition may not be satisfied and V¢ will be
written V¢ = V' + a where V' is a connection on & and a € Q'(End(TM)). The
1-form a depends on the choice of compatible connection V' only up to a 1-form
taking values in Ad(Z?) = (& x g)/G, where g is the Lie algebra of G. Hence if
we denote by m the orthogonal complement of g in so(m), the projection 75 of a
onto myp = (& x m)/G does not depend on any arbitrary choice and is called the

. . . . . . . Gy
intrinsic torsion of 2. Moreover, we see that & admits a unique connection V7

1One may also define the intrinsic torsion if G is not a subgroup of O(m), but the definition is
somewhat more involved. See [66] for instance.
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such that V9 = VZ 4 75, called the canonical connection?®, and & is torsion-free
if and only if V9 = V7.

As previously mentioned, we will be interested in the case where G is the
stabiliser of a non-trivial vector ¥ in a linear representation of GL(m). It follows
from our discussion that if a G-structure & is torsion-free then the corresponding
section 1 is parallel, and therefore up to conjugacy the holonomy group of g must
be a subgroup of G. The converse is also true: if Hol(g) C G, then the Levi-Civita
connection of g admits a parallel G-structure. In this sense, holonomy detects the
presence of additional compatible geometric structures on a Riemannian manifold.
For this reason, the classification of Riemannian holonomy groups plays a central

role in geometry, and we will outline it in the next part.

1.1.3 Berger’s list of Riemannian holonomy groups. The list of possible
Riemannian holonomy groups is a priori very long, so in order to classify them
it is reasonable to make a few assumptions. First, up to covering maps one may
restrict to the case when M is simply connected, which forces the holonomy group
of any Riemannian metric g on M to be connected. Moreover, one usually assumes
that the metric g is irreducible, in the sense that the holonomy group acts irre-
ducibly on the tangent space; otherwise one can easily show that (M, g) is locally a
Riemannian product, and in fact a theorem of de Rham [35] implies that if (M, g)
is complete, simply connected and reducible then it is globally a Riemannian prod-
uct, in which case its holonomy group is just the direct product of the holonomy
groups of each irreducible component.

A Riemannian manifold (M, g) whose curvature tensor is parallel is said to
be locally symmetric. If moreover (M, g) is complete and simply connected, this
condition implies that it must be a symmetric space (the geodesic involution at
every point of M can be extended to a global isometry). Symmetric spaces are in
particular homogeneous (there is a transitive isometric action by a Lie group) and
they were classified by E. Cartan using his own classification of Lie groups. From
this classification, it is possible to deduce the list of holonomy groups of symmetric
spaces. Since a simply connected locally symmetric space is always isometric to
an open subset of a symmetric space, this settles the classification of Riemannian
holonomy groups in the locally symmetric case.

In his PhD thesis [11], Berger used Cartan’s theory of Lie groups in order to

derive constraints on the possible holonomy groups for non-symmetric (VR # 0)

2This terminology is not widely accepted since the notion of canonical connection may depend
on the context, but it is suitable for our purpose.
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dimension group name/description
m > 1 SO(m) generic case
2m, m > 2 U(m) Kahler
2m, m > 2 SU(m) Calabi-Yau/Ricci-flat Kahler
dm, m > 2 Sp(m) hyperkahler
dm, m > 2 Sp(1).Sp(m) quaternionic-kéhler
7 Go exceptional
8 Spin(7) cases

Table 1.1: Berger’s list of Riemannian holonomy groups.

simply connected spaces®. For this he used the Ambrose-Singer holonomy theorem
together with the symmetries of the Riemann curvature tensor and the Bianchi
identity to prove that for most irreducible and simply connected subgroups H of
SO(m), a metric with holonomy H would have to be locally symmetric. A striking
fact about the list of possible candidates that he obtained is that it is actually
quite short - and it became even shorter a few years later when Alekseevskii ruled
out the case of Spin(9) C SO(16) [5]. With this amendment, the complete list is
shown in Table 1.1.

At the time of Berger, it was not known whether all the groups on the list could
actually occur as the holonomy group of an irreducible non-symmetric Riemannian
manifold, except for SO(m) (the generic case) and U(m) (generic K&hler metrics).
It took another thirty years or so to prove that it was indeed the case. The cases of
SU(m) (Ricci-flat Kéhler metrics), Sp(m) (hperkéhler metrics) and Sp(1). Sp(m)
(quaternionic-ké&hler metrics - which are not in fact Kéhler) are related to complex
geometry, and by now there is a rather rich set of tools available to study them.
Complete examples of such metrics were notably given by Calabi [21] (for SU(m)
and Sp(m)) and Galicki and Lawson [44, 45] (for Sp(m). Sp(1)), and in the compact
setting the existence of Kahler Ricci-flat metrics follows from Yau'’s solution of the
Calabi conjecture [123] - hence such metrics are also called Calabi—Yau.

The question of the existence of metrics with exceptional holonomy - Go and
Spin(7) - remained open for a long time, before being finally settled by Bryant
[16] in 1987, using the theory of exterior differential systems®. A few years later,
Bryant—Salamon constructed the first complete examples using cohomogeneity 1
techniques [19]. The first compact examples are due to Joyce [64, 65, 63], who de-
veloped a general gluing-perturbation method which is still some thirty years later

the only available tool for constructing compact exceptional holonomy manifolds.

3In fact Berger considered the more general case of metrics with arbitrary signature.
4Which incidentally was also first developed by E. Cartan and further extended by Kéhler.
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1.2 Gy-geometry

This section gathers some basic notions of Gg-geometry. In §1.2.1, we recall the
definition of positive forms in R” and a few elements of their linear algebra. Go-

manifolds are introduced in §1.2.2, and their moduli spaces in §1.2.4.

1.2.1 Positive forms on R". Let us consider R” equipped with its standard
orientation and denote by R% its dual space. A 3-form ¢ € A’RZ is said to be
positive if for any v € R™\{0} we have

(vap) A (vap) A >0 (1.1)

relative to the standard orientation. Here -J- denotes the interior product of a
vector in R” and an alternating form in A(R%). The set A3 Rz of positive forms
is nonempty and open in A’R%, and is acted upon transitively by the group of
orientation-preserving automorphisms GL, (7). The stabiliser of any positive form
is conjugated to the group Gy C SO(7). This is a compact, simple Lie group of
dimension 14. A positive form ¢ € A% R canonically determines an inner product

on R”, which we denote by g, or (-,),, and a 7-from u, € A"R? characterised by

(v2p) A (usp) A g = 6{u, V), Yu,v € R’ and 12)
1.2
o2, =T.

The dual 4-form of ¢ with respect to the Hodge operator *, associated with g,
is commonly denoted by O(p) € A'R:. The maps ¢ > gy, ¢ > fi,,  —> *, and

© — O(p) are non-linear and equivariant under the action of GL. (7).

Ezample 1.1. Let R” be endowed with the canonical basis (ey,...,e7) and let
(e',...,e") be the dual basis of Ri. For conciseness we shall write ¢ =
et A---Aet for any 1 < iy,...,i; < 7. Then we can define the following standard

positive form:
0o = €127 AT 4 50T 4 o135 _ Q6 _ (236 245

The associated inner product gy is the one for which the canonical basis of R” is

orthonormal, and the dual 4-form of ¢ reads:
O(pp) = 356 | (1256 | (1234 267 4 2357 | 1457 4 1367

Any positive 3-form ¢, together with the 4-form ©(p) and the inner product
(-, ), satisfy the following important property. If u,v,w, 2 € R” have unit norm

with respect to (-, -),, then the following inequalities hold:

lo(u,v,w)| <1 and  |O(p)(u, v, w, 2)| < 1.
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In other words, for any oriented 3-plane V' C R” the restriction of ¢ to V is smaller
or equal to the volume element associated with the restriction of . Similarly,
for any oriented 4-plane W C RT the restriction of O(y) is smaller or equal to
the volume element of the restriction of g,. The 3-planes (respectively 4-planes)
realising the equality case are called associatives (respectively co-associatives).
Let us now fix a positive form ¢ on R7, and identify the stabiliser of ¢ with G,.
The exterior algebra A(R%) can be decomposed into irreducible representations of
Go as follows. The representation R is irreducible, as Gy acts transitively on the

unit sphere. The space of 2-forms can be decomposed as:
A'R7 = Ay @ A7

where A%, is isomorphic to the Lie algebra of Gy and A2 ~ R:. In particular, any
w € A’R3 can be written uniquely as w = vy + x, where v € R” and x € A3,.
In order to decompose A3R%, let us introduce a bilinear map End(R") ® A(R%) —
A(R?) defined by:

d

hop = &
T @,

(eth>*77 = 77“% R )+ ) +77< 5 h)a V(h, 77) S End<R7) X A<R;)

(1.3)
Up to a sign, this is the derivative of the action of GL(7) on AR%. Since GL, (7) acts
transitively on A3 R} which is open in A’R%, the map h € End(R") — h-¢p € A’R;

is onto. The representation End(R”) can be decomposed as:
End(R7) ~ A’R: @ S?R: ~ A2, 9 A2 R @ SZR:

where A}, is identified with the Lie algebra of G, and S3R3 is isomorphic to the
space of trace-free self-adjoint endomorphisms with respect to g,. The kernel of the

above map End(R") — A®R: is A2, and therefore we obtain the decomposition:
NR: = Al @ A2 b A,

where A3 ~ R: and A3, ~ SZR:. In particular, any 3-form € A®R: can be
written uniquely as n = Ap + v1O(p) + v, where A € R, v € R” and v € A3,. As
AFR: ~ AT*Rz under Hodge duality, this give a full decomposition of AR;. We
shall denote by 7, the projection of A*R% onto A¥ .

We finish these generalities with a few useful formulas for the first variation
of various tensors associated with an inner product or a positive form on R7, and

some interesting consequences. First, we begin with some properties of the bilinear
map End(R") ® A(R%) — A(Rz:) previously defined:
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Lemma 1.2. For h € End(R") we denote by &, : A(R%) — A(R%) the linear map
n h-n. Then for h,h' € End(R") the following properties are satisfied:

(i) The map 0y, is a derivation of degree 0 of A(R%). That is, it preserves the
degree of forms and h-(wAW') = (h-w) AW +wA(h-w') for any w,w € A(R3}).

(ZZ) [5h75h’] = _5[h7h’]-

(iii) If h is (anti-)self-adjoint for some inner product on R”, then &y, is (anti-)self-
adjoint for the induced inner product on A(R3).

Proof. That 0, is a derivation of degree 0 can be seen by differentiating the iden-
tity (e)*(w A w') = (e")*w A (e")*w’. Moreover, by definition § : End(R7) —
End(A(R%)) is the negative of the natural action of the Lie algebra End(R") on
A(R?), and thus (05, 0] = —0pp. Last, if b is g-self-adjoint and w € R%, then
the dual vector of dpw = w o h is h(v), where v € R” is dual to w. From this it
follows that 4y, is self-adjoint for the inner product induced by g on R%, and thus
on A(R%). We can argue similarly when h is anti-self-adjoint for g, since then the

dual vector of wo h € R: is —h(v) if v € R” is the vector dual to w. O
The next lemma gathers a few useful identities which are easy to check.

Lemma 1.3. Let g be an inner product on R” and h € End(R7), and consider a
1-parameter family of inner products g; such that go = g and % — = g(h,-) +
g(-,h). Let w,w' € A*R: for some 0 < k < 7. Then we have the following first

variation formulas:

d
% <w7w/>9t = _<h : waw,)g - <w7 h - w/>97
t=0
4 kg, W = N+ (k,w) — *4(h - w)
dt o gt g g ?
d
1. Mgy = tr(h):u
dt),_," "’ g

These two lemmas have a few consequences that will be useful in the rest of
the article. First note that if A is self-adjoint for g, then ¢; is self-adjoint for the
inner product induced by g on A(R%) and thus with the notations of the above

lemma we have

4
dt

<UJ, w/>gt - _2<h "W, w/>g
t=0

for any w,w’ € AFR%. This implies:
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Corollary 1.4. Let h, 1/ € End(RT), and suppose that h is a trace-free endomor-
phism, self-adjoint with respect to an inner product g, and h' is anti-self-adjoint

for g. Then for any w € A*R: we have:
h(kgw) = —%4 (h-w), and h'-(xw)=%4(h"-w).

Proof. Consider the family of inner products g; = (e'")*g. Using the previous
lemmas, we can differentiate the identity w' A x5,w = (W', w),, 1tg, at t = 0 which

yields:
W AR (xgw) —w Asg(h-w)==2(w' h-w)gu, = —2w A *4(h-w)

and hence W' A h- (x,w) = —w' A*,4(h-w) for any w’ € A*R%, which proves the first
identity.

For the second identity, we note that since b’ is anti-self-adjoint for g, the linear

h

. . /
isomorphisms e preserve g, and thus

koW = eth/(*ge_th/w)
for any ¢, and differentiating at ¢t = 0 it follows that A’ (x,w) — *4(h - w) = 0. O
Another useful consequence to note is:

Corollary 1.5. If ¢ is a positive form on R”, then the cubic form

(h1, ha, hy) € S*RE x S°R: x S°R: — (hg - hy -0, he - ), € R
is fully symmetric.
Proof. The identity

<h3'h1'907h2‘<ﬂ><p = <h1‘@7h3'h2'90></9 = <h3'h2'907h1‘<ﬂ><p

holds because 0y, is self-adjoint for the inner product induced by ¢ in A(R%). Thus
the cubic form is symmetric under permutation of hy and hs. To prove that it is
also symmetric under permutation of hy and hs, note that since [0p,, 0, = —0{ny py)

we have

(hg - hi-@,hy- @) — (h1-hg @, hy- )y = ([h1,hs]- @, ha- ), =0

where the last equality follows from the fact that [hq, hs] is anti-self-adjoint, and
thus [y, k3] - ¢ € A2 is orthogonal to hy - ¢ € AT & A3 O

Finally, we record the following well-known first variations formulas:
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Lemma 1.6. Let p be a positive form on R7, n € A’R} and let h € End(R")
be the unique endomorphism orthogonal to A2, such that h - = n. Let p; be a
1-parameter family of positive forms in R” such that oy = ¢ and % .
let w,w' € AFR: for some 0 < k < 7. Then we have the following first variation

formulas:

0= and

d
% <w7w/>tpt = —<h~w,w')@— <w>h'w/>¢7
=0
d * b (kpw) — *,(h - w)
. . w = . w) — - W),
dt|,_, @ @ @
d
—| Hp = tr(R)pg,
dt|,_," " v
d 4
i O(py) = 3 ko, 1 (1) + *,m7(N) — *,mo7(n):
t=0

1.2.2 Gsy-manifolds. Let M be an oriented 7-manifold. According to the discus-
sion of the previous section, a Gg-structure corresponds to the data of a 3-form
¢ such that ¢, € T,M is positive for every p € M. Not all 7-manifolds admit
Go-structures: a necessary and sufficient existence condition is that M be ori-
entable and spin [66]. In the remainder of this section we shall assume that these
conditions are satisfied. Moreover, we will denote by A3T*M C AT*M the open
subbundle of positive forms and Q2 (M) the set of sections of A3 T*M (which is
nonempty by assumption).

The properties of positive forms on R7 carry over to Ge-structures on manifolds.
In particular, a Ga-structure ¢ € Qi(M ) determines a Riemannian metric g,, a
volume form 4, and a 4-form ©(p) = *,p. Moreover, ¢ induces a splitting of the
exterior bundle A(7T*M) and identifications

T*M ~TM,
A*T*M = A2T*M @ A3, T*M, A2T*M ~ T*M,
NT*M = N3T*M @ A2T*M @ A5, T*M,  AT*M ~R, A3T*M ~ T*M,
AFT*M ~ AT™=FT* M, k=0,...,7

where we denote by R the trivial real line bundle M x R. There is a corresponding
splitting of the algebra of differential forms on M, and we will write QF(M) =
D (M) where QF (M) = C*(A* T*M), and denote by ,, the projection of
QF(M) onto QF (M). Any 2-form w on M can be written uniquely as w = €@ + x
with £ € C®(TM) and y € Q2,(M), and any 3-form 7 can be written uniquely as
n= fo+£i0(p) +v where f € C®(M), £ € C®°(TM) and v € Q3.(M).

21



Another useful way to describe a 3-form is to decompose End(T'M) as
End(TM) ~ A°T*M & S*T*M = A3, T*M ® A2T*M & Rg, ® S;T*M

where S§T*M ~ A3.T*M. Then for any 3-form n € Q3(M), there exists a unique
section h € C°°(End(T'M)) orthogonal to Q?,(M) such that n = h - ¢. Note that
m7(n) = 0 if and only if & is a self-adjoint endomorphism for the metric g,.

As we discussed in §1.1.2 in the general context of geometric structures, a
Go-structure ¢ has an associated (intrinsic) torsion 7(¢). Since the orthogonal
complement of the Lie algebra g, in s0(7) is isomorphic to R as representation of
Ga, T(p) is a section of the bundle T*M ® T'M ~ End(TM). Hence the torsion
7(¢) can be decomposed into four components commonly denoted by 7, € C* (M),
7 € QY M), 7 € Q3,(M) and 73 € Q3.(M). These torsion forms are related to dy
and d(O(y)) in the following way:

dp =10(p) + 31 A p+ .73,  d(O(p)) =411 AO(p) + 72 A .

A Gy-structure ¢ is called torsion-free if 7(¢) = 0, that is if ¢ is parallel for the
Levi-Civita connection of g,. Because of the above identities, this amounts to the
condition that ¢ be closed and co-closed [41]. If this is satisfied, then the holonomy
group of g, is conjugated to a subgroup of G, and in particular the metric g,
is Ricci-flat [14]. A T7-manifold M endowed with a torsion-free Go-structure is
called a Go-manifold. As we mentioned in the previous section, the existence of
metrics with holonomy Gy is known in both the compact and noncompact (and
complete) settings. However, the question of which 7-manifolds admit torsion-free
Ga-structures is far from fully understood, even though the topological condition
of existence of Go-structures is quite simple. One reason which accounts for this is
that the equations dgp = 0 = d(©(p)) are highly nonlinear, due to the nonlinearity
of the map ¢ — O(p). If M is compact, one can still deduce certain necessary
topological conditions. For instance, since a torsion-free Go-structure is always a
non-trivial harmonic form, Hodge theory implies that (M) > 0. Similarly, it
is known that the first Pontryagin class p; (M) € H*(M;Z) of a compact nonflat
Go-manifold is always nonzero [66]. But we do not know any sufficient topological
conditions for the existence of torsion-free Ga-structures on a compact manifold.
Let us now discuss further consequences of Hodge theory on a compact con-
nected Go-manifold (M, ). Due to a Weitzenbock formula, the Laplacian operator
A, = dd*¢ + d*#d associated with g, leaves invariant each component of the split-
ting QF(M) = @Qk (M). Therefore, the Hodge theorem yields a decomposition of
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the de Rham cohomology groups H*(M) ~ @ HP¥ (M), and moreover isomorphic

representations lead to isomorphic components in cohomology. In particular:
HY(M) ~ H}(M) ~ H3(M) and H}(M)~ H°(M) ~R.

This decomposition is analogous to the decomposition of the cohomology of a
compact Kéhler manifold into classes of type (p, q). We will denote by S#%(M, )
the space of k-forms harmonic with respect to g,, by J£¥(M, ) the intersec-
tion of (M, ) and QF (M), and define the refined Betti numbers 0% (M) =
dim HE (M). Since the metric g, is Ricci-flat, J#'(M) is exactly the space of
parallel 1-forms on M, and is dual to the space of Killing fields. The Cheeger—
Gromoll splitting theorem [24] implies that g, has full holonomy Gy if and only if
m (M) is finite [66, Prop. 10.2.2]. When this condition (or the weaker condition
b (M) = 0) is satisfied, then H'(M) = H?(M) = H3(M) = 0 and the Hodge
decomposition is reduced to H*(M) = H% (M) and H3(M) = H(M) & H3,(M).
Since b3(M) = b°(M) = 1, the only undetermined refined Betti numbers are
b, (M) = b*(M) and b3, = b*(M) — 1.

1.2.3 Dimensional reduction. For later use, it will be important to describe
the geometry of Go-manifolds which do not have full holonomy. In the compact
setting, this occurs when the fundamental group is infinite. In general, if (M, @)
is a complete Go-manifold which does not have full holonomy, then the universal
cover M of M , endowed with the induced torsion-free Go-structure ¢, must be
isometric to a product R*¥ x (N7=* gy) where N is a simply connected manifold
endowed with a complete Ricci-flat metric which does not split a Euclidean factor.
If M is compact, the Cheeger—Gromoll splitting theorem implies that there is a
finite cover of M isometric to T* x (N, gy) where T* is a flat torus and N is
compact. In any case, the holonomy group of gy must be a proper subgroup of
Gs and also be an item of Berger’s list (a priori it could also be a product thereof,
but this does not occur). There are only three such subgroups: the trivial group
1, SU(2) and SU(3). Let us describe the geometry associated with each of these
holonomy groups and describe their relations to Go-geometry.

In the simplest case where the reduced holonomy group is trivial, then N is
reduced to a point and the universal cover of M is isometric to a flat R”. Up to a
linear change of coordinates, ¢ can be identified with the standard positive form
o from Example 1.1. Hence M must be isometric to the quotient of (R”, @) by
a discrete subgroup of Gy xR”. Compact examples can be constructed by taking

quotients of flat tori.
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When the holonomy group of gy is SU(2) C SO(4), then k = 3 and the metric
gn is hyperkdhler. This means that N admits a triple of symplectic (closed and
non-degenerate) 2-forms wy, ws, ws satisfying the relations

QWi N wj = Oijflgy

where p, is the volume form of gn. Each symplectic form is Kahler with respect to
an integrable complex structure J; defined by w; = gn(J;+, ). The triple of complex
structures (Ji, Ja, Js) satisfy the well-known quaternionic commutation relations;
this is related to the isomorphism SU(2) ~ Sp(1) of Lie groups. Noncompact
complete examples of hyperkédhler 4-manifolds include the Eguchi-Hanson metric
on T%5?, and ALE or ALF manifolds constructed via the Gibbons-Hawking ansatz.
In the compact case, the only simply-connected examples are K3 surfaces. If one
choses coordinates (t1,t,t3) on R® and (N, g,) is a hyperkéihler 4-manifold with
hyperkéhler triple w = (w;, wa, ws), then R® x N can be endowed with a torsion-free

Go-structure defined as
dtl /\dtg /\dtg —dtl /\wl —dtg/\wg —dt3/\w3

whose associated metric is dt} + dt3 + dt3 + g,.

The last possible case in this list is when & = 1, gy has holonomy SU(3) and
N has dimension 6. Like the previous case, it fits within the more general case of
2m-manifolds with holonomy SU(m). Since SU(m) C U(m) such manifolds are in
particular Kéhler: they admit an integrable complex structure J and a symplectic
form w = g(J-,-). The restriction from U(m) to SU(m) corresponds to the exis-
tence of a parallel holomorphic volume form 2 (a nowhere vanishing holomorphic
section of the canonical bundle). The existence of a parallel holomorphic volume
form is equivalent to the condition that the canonical bundle be trivial and the
Kéhler metric g be Ricci-flat. The fact that any compact Kéhler manifold with
trivial canonical bundle admits a unique Ricci-flat Kahler metric in every Kéahler
class is a consequence of Yau’s theorem which we have already mentioned before.

It is worth pointing out that, by the Kodaira embedding theorem [77], any
compact m-fold with holonomy SU(m) is automatically projective if m > 3 (this
statement fails if m = 2). As a consequence of Yau’s theorem, compact Calabi-
Yau manifolds are easy to produce: for instance, any smooth hypersurface in CP™
defined by the vanishing of a homogeneous polynomial of degree m + 1 has trivial
canonical bundle by the adjunction formula, and hence admits Ricci-flat Kéhler
metrics. In the noncompact setting, there is also a wealth of constructions, notably
due to Calabi [21] and Tian—Yau [109, 110].
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Going back to the case m = 3, let gy be a Calabi—Yau metric on a complex
manifold (N, J), let w be the corresponding Kéhler form and pick a holomorphic

volume form € satisfying the normalisation condition

1, 1.
S = SO A
67 4

Then one can define an associated torsion-free Go-structure on R x N as
dt Nw + Re)
where t is the coordinate along R. The associated metric is dt? + gx.

1.2.4 Moduli spaces. Let M be a compact oriented 7-manifold which admits
torsion-free Go-structures. We denote by & the group of diffeomorphisms of M
acting trivially on H3(M). In particular, it contains the group of diffeomorphisms
isotopic to the identity, but it could be larger. The group Z acts by pull-back on
the space Q3 (M) of Go-structures on M, leaving invariant the subset of torsion-
free Go-structures. The moduli space .# of torsion-free Go-structures is defined
as the quotient of the set of torsion-free Go-structures by this action. It has a
natural topology coming from the C*°-topology of Q% (M), and it was proven by
Joyce [64, Th. C] that it admits a compatible manifold structure of dimension
b*(M). Moreover, the map .# — H?*(M) sending ¢2 € .4 to the cohomology
class [p] € H3(M) is a local diffeomorphism. This endows .# with a natural atlas
of charts with affine transition functions, and therefore .# even has the structure

of an affine manifold.

Remark 1.7. In fact our definition slightly differs from the convention adopted in
[64] (or in Joyce’s monograph [66, §10.4]) where one takes the quotient by the group
Py of diffeomorphisms isotopic to the identity (the resulting space may be called
the ‘Teichmiiller space’ .7 of torsion-free Go-structures). With our definition,
we are taking a further quotient by the discrete group I' = Z/%,, but since
the Teichmiiller space is locally diffeomorphic to H3(M) and 2 acts trivially on
this space, it follows that the quotient .# = 7 /T is nonsingular and locally
diffeomorphic to H*(M).

Hence .# is more of a ‘marked moduli space’ (we fix an identification of H*(M)
with R%(M)) of torsion-free Gy-structures on M, but we will just call it the moduli
space for simplicity. This does not affect the results which we will prove in Chapters
4 and 5, since with either convention the moduli space is smooth and locally
diffeomorphic to H3(M).
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By means of justifying our choice of convention, let us point out the follow-
ing somewhat subtle issue. Let us look at the moduli space of torsion-free Go-
structures on the torus 77 = R7/Z". Tt is natural to guess that it can be identified
with AZR%. It is not difficult to see that this is true, with our convention. The
issue is that the structure of the mapping class group of T7 is rather complicated,
and in particular there are elements of the mapping class group which act trivially
on the cohomology H*(T7) (this is true for 7™ for any n > 5 [58, 62]). In particu-
lar, I' = 2/ %, is a non-trivial (even infinitely generated) group, and it acts freely
transitively on the fibres of the covering map 7 — .

To see this last point, let ¢ be a torsion-free Gy-structure on 77, which we
may assume to be induced by a linear positive form on R”. If oy, an € 2 satisfy
i = ajde, then asa;p’ is an isometry for the metric gy, which is induced by an
inner product on R”. Hence apaj L' e Gy xR". The action of the linearisation
A € Gy of asa;! on R can be identified with its action on H'(T7), and the
action of asa;’ on H3(T7) can be identified with the action of A on A’R:. But
the representation of Gy on A’R} is faithful and by assumption ay, ap act trivially
on H3(T7), whence we deduce that A = Id. Therefore asa;’® is a translation of
T, and as such it is isotopic to the identity. That is, a; and a, define the same

element of I", which proves our claim.

Let us now outline the construction of the manifold structure of .# for later use;
or equivalently of the Teichmiiller space 7. The first step is to find a convenient
description, as a topological space, of the quotient of Q3 (M) by the action of Z.
Adapting a result of Ebin [40], this essentially boils down to finding a good slice
for the action of Z,. Near a torsion-free Go-structure, this leads to the following
local description [66, Th. 10.4.1]:

Proposition 1.8. Let ¢ € Q% (M) be a torsion-free Gy-structure on M, and denote
by 1, the subgroup of Dy fizing . Define L, = {¢ € Q% (M), m7(d*p) = 0}, where
w7 and d* come from the Go-structure ¢ and the associated metric. Then there
exists an open neighbourhood S, of ¢ in L, invariant under I,, such that the

natural projection from S,/1, to Q3. (M)/Dy induces a homeomorphism between
Sy/1, and a neighbourhood of ¢y in Q3(M)/P,.

Let us now fix a torsion-free Go-structure on M. We seek to understand the
subspace of Q% (M)/2, defined by .7 in a neighbourhood of ¢%,. To that end, let
us denote by L/, the intersection of L, with the set of torsion-free Go-structures;
that is, L, = {¢ € Q} (M), m7(d*@) = 0 and d¢ = dO(@) = 0}. As in the above

proposition, there exists a neighbourhood S), of ¢ in L{,, invariant under I,,, such
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that the natural projection from S, /I, to 7 induces of homeomorphism from
S,/1, to a neighbourhood of ¢%; in 7. In order to obtain a characterisation of

the torsion-free Go-structures close to ¢, let us write:

Op +1) = Op) + 5 %o mala) + #mr(n) —#mn(n) + Fol) (1)

where the terms containing projections are the linearisation of © at ¢ and F, is a
smooth non-linear map defined for n small enough. Let ¢ be a closed Ga-structure
on M, written uniquely as ¢ = ¢+ &+ dw where £ is harmonic and w is a co-exact
2-form. Then we have the following [66, Prop. 10.4.3]:

Proposition 1.9. There exists a universal constant e, > 0 such that, if ¢ € L, and
@ —llco < €1, then @ lies in L, if and only if (dd* +d*d)w +*d(F,({ +dw)) = 0.

With the above proposition, one may use the Implicit Function Theorem in
an appropriate Banach space in order to prove that for small enough harmonic
3-forms &, there exists a unique torsion-free Go-structure ¢ = ¢ + £ 4+ dw lying in
L, and such that the norm of ¢ — ¢ is controlled by the norm of §. In particular,
any small open neighbourhood of ¢ in L{, is homeomorphic to an open subset of
H?3(M) through the map sending a torsion-free Gy-structure to its cohomology
class. Since % acts trivially on H*(M), this implies that the isotropy group I,
acts trivially on L{, near .

This outline of proof shows that the tangent spaces T,,4,-7 and T,4.# can be
intrinsically identified with the space of 3-forms J#3(M, ) which are harmonic
with respect to the metric g,. Using this identification, we may define a natural

Riemannian metric ¢4 on .# by

/ 1 / /
Go(n,m') = Vol(@)/(nmbuw v, € (M, ) = Ty M.

That is, ¢ is the volume-normalised L?-metric. It will be our main object of study

in the last three chapters of this thesis.

Remark 1.10. As we mentioned in the introduction, the metric ¢ fits into the
broader context of the moduli spaces of special holonomy manifolds. It is analogous
to the Hodge metric on Kéhler cones and to the Weil-Petersson metric on the

moduli spaces of complex structures of Calabi—Yau manifolds.
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Chapter 2

Gluing constructions with
Ck-estimates

As of today, all the known compact Gp-manifolds are constructed by a gluing-
perturbation method whose analytical foundations were laid by Joyce [65, 66]. The
idea is to start from a closed Gy-structure ¢ with small torsion, and to deform it
to a nearby torsion-free Go-structure ¢ within the same cohomology class using
a fixed-point argument. The general existence theorem of Joyce [66, Theorem
11.6.1] gives control on the C%-norm of @ — ¢ and only requires bounds on certain
geometric quantities (curvature, injectivity radius, and various weak norms of the
torsion), making it applicable in a wide range of geometrical contexts.

For certain purposes however, it is more convenient to have control on a num-
ber of derivatives of ¢ — ¢, for instance in order to approximate the differential
operators associated with ¢ by those associated with . In the particular case of

the generalised Kummer construction, Platt was able to improve the control to

1
'3
associative submanifolds whose volume is shrinking to zero [39].

Ch-estimates for any a € (0,2) [103], which was crucial in order to construct

In this chapter we shall derive a general theorem giving sufficient conditions to
be able to deform a closed Ga-structure ¢ to a nearby torsion-free Go-structure @
with estimates on ||¢—||cr, for any & > 1. The precise statement is Theorem 2.14,
which improves and generalises an argument which appears in the last section of
the article [82] by the author. In contrast to Joyce’s existence theorem, our result
gives a control on any number of derivatives of ¢ — ¢, but the trade-off is that
we need much stronger bounds on quantities that are not entirely geometrical (i.e.
the operator norms of Sobolev embeddings and Green’s functions) and on a high
number of derivatives of the torsion.

This necessarily restricts the scope of application of our result, but in certain

situations it yields an improvement on the previously known estimates. In the
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second section of this chapter, we will apply it to the twisted connected sum

construction and show that we can well approximate any number of derivatives.

2.1 A deformation theorem with C’*-estimates

Our deformation theorem is proved in §2.1.3, and relies on a series of uniform
estimates which we derive in §2.1.1 and §2.1.2.

2.1.1 Uniform estimates for compatible connections. The main ingredient
from functional analysis that we need in this part is the Implicit Function Theorem
for analytic maps between Banach spaces [120]. We first recall some definitions.
Let U C A be an open subset of a Banach space, let B be another Banach space,
and let f : U — B be a map. Let us moreover denote by L(A, B) the Banach
space of bounded linear maps between A and B, and define inductively L., (A, B) =
L(A, Ly,,—1(A, B)). It is a classical fact that L,,(A, B), equipped with the operator
norm, is a Banach space isometric to the space of bounded m-linear maps defined
on A and valued in B. The map f is said to be analytic at a point ug € U if there
exists a family of symmetric multilinear maps f,, € L,,(A, B) such that the series
S || fm]|t™ has non-zero radius of convergence and f(u) = X, fi(u — up)™ in a
neighbourhood of g, where we use the notation f,,uq - - - u,, (respectively f,u™)
for fo(ui, ..., un) (respectively fp,(u,...,u)). Moreover, f issaid to be analytic if
it is analytic everywhere on U, which in particular implies that f is smooth. If A
and B are finite-dimensional, this definition is equivalent to the usual definition of
analytic maps in terms of power series expansions, and most properties of analytic
maps carry out from the finite-dimensional to the Banach space setting.

For our purpose, an especially important class of analytic maps are equivariant
maps. Let (p, W) be a linear representation of GL;(7), and let T : A3R: — W
be an equivariant map. As GL.(7) acts transitively on A3R%, the map T is
determined by the image of any positive form. In the following two lemmas we

state some useful properties of such maps:
Lemma 2.1. Let T : A3R: — W be an equivariant map. Then:
(i) The map Y is analytic.

(i) Let Yp, : A3RE — L,,(A*R:, W) be the maps determined by the expansion
T(e+mn) =, Ynlp)n™. Then each Y,, is an equivariant map.

29



Proof. Fix a positive form ¢y on R” and identify the stabiliser of y with G. Let
us pick a direct sum decomposition gl; ~ g, @ p, where g, is the Lie algebra of Gs.

Then there exists a neighbourhood Uy of 0 in p such that the map
Up — ASRE, € — exp(—£)* o

is a diffeomorphism onto a neighbourhood Vj of ¢ in A2R:. The above map is
polynomial and hence analytic, and so is its inverse, which we denote by &(¢) for

¢ € Vy. By equivariance of the map T, if p € Vj we have:

T(p) = T(exp(—£(p)) o) = plexp () T(po) = exp(p«(£(¢))) T (o)

which is analytic in ¢, as £ and exp are analytic. This proves point (i).
For point (ii), let & € GL4(7), ¢ € A3R3 and consider a 3-form n € A’R}
such that the norm |f|, is smaller than the radii of convergence of the series

Yo +n) = 3, Tule)n™ and Y((a )e + 1) = X Tul(a ) ) ()™ As
|(a71)*77|(a*1)*¢ = |77|¢, we have:

T((@ ™) (e +n) = Tulla™) @) ((a ) n)™

m

On the other hand, since the map T is equivariant, we also have:
T((@™) (¢ +m) = pla)T(p +n) =D pla)(Tml)n™).
By uniqueness of the expansion, we deduce that

T ((@)*)n™ = pla) T () (n)™

for all n € A’R%. Hence the map Y., : A3R: — L,,(A’R%, W) is equivariant under
the action of GL, (7). O

We deduce the following adaptation of [64, Lem. 3.1.1]:

Lemma 2.2. Let T : A3R: — W be an equivariant map, and assume that any
positive form ¢ € A3R: induces an inner product gzv on W such that the map
@ € MRy — gV € STW* is equivariant. We denote by |ul, the norm of u € W
relative to the inner product gZ,V, and by ||, the norm of n € A’R% relative to the
inner product g,. Then there exist a sequence of nonnegative numbers ag, ay, as, . . .
and a constant R > 0 such that the following hold:

(i) If ¢ is a positive form and n € AR satisfies |n], < R then p+n is a positive

form.
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(i) For any ¢ € AT R: we have:
Tra(O)m Ml < amlmle - [mle, Y, onm € AgR;'

(iii) The series Y a,,t™ has radius of convergence greater or equal to R.

Proof. As noted in [66, Def. 10.3.3], there exists a universal constant ¢ > 0 such
that for any positive form ¢, if n € AR satisfies |n|, < € then ¢ + 7 is also a
positive form. Now let us fix ¢y € A7R? and denote by a,, the operator norm
of Tu(wo) € Liyn(A*R:, W) relative to the norms induced by ¢ on A’R: and W.

That is, a,, is the smallest nonnegative number such that

|Tm(900)771 o '77m|<po < am|771|<po T |77m|<pov VN1, . m € AsR;- (2'1)

As Y is analytic, 3 a,,t™ has positive radius of convergence. If p € A3R?, then
there exists a € GL, (7) such that ¢ = (a™")*po. If 01, ..., 7m € A’RE, we have

T ()01 Ml = | (@) Ton(@o)a™ny - - - @™ N |-

As the map ¢ — gf;V is equivariant, the corresponding norms on W satisfy

Ip(@)uly = |ufary = |u]py, Yu e W.

Thus we deduce from (2.1) that
T (0)1 - '77m|so = [T (po)(an) - - (a*nm”wo
< am‘&*nlysoo e ’a*nm’sﬂo'

Moreover, since ¢ — g, is equivariant, we have

|a*77|<po = |77|(oﬁ1)*<po = |7I|¢>

whence we finally deduce

|Tm<90)771 o '77m|g0 < am|771|<p T |77m’<p'

Hence the lemma holds if we take R > 0 to be the minimum of € and the radius

of convergence of the series Y a,,t™. O

Remark 2.3. Since any two norms on W are equivalent, the radius of convergence
of the series Y a,,t™ does not depend on the choice of equivariant family of inner
products gg/ on W, since the coefficients a,, only depend on this choice up to
multiplication by a positive constant independent of m. Hence we can define R

independently from a particular choice of family of inner products on W.
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The above lemmas will be used in the following way. Let M be an oriented
compact 7-manifold, equipped with its oriented frame bundle, and let E be the
vector bundle associated with the representation (p, W). We assume moreover
that W is endowed with an equivariant family of inner products ¢ — g:;V . Then
the equivariant map T : A3R; — W induces a (possibly nonlinear) bundle map
T : A3T*M — E. In the same way, each map T, : A3R% — L,,,(A’R%, W) induces
a bundle map Y,,, : A3T*M — L, (A*T*M, E). Hence if ¢ is a positive form on
M, T,.(p) is a fully symmetric m-linear map from A3T*M to E. Moreover, ¢
induces a metric hy, on the vector bundle E. If 7 is a 3-form whose C°-norm
with respect to the Riemannian metric induced by ¢ is smaller than the radius R

defined in Lemma 2.2, then we have a convergent power series expansion:

T(o+n) = i To(e)n™. (2.2)

=0

Note that for any connection V on M compatible with ¢ (that is, Vi = 0), the
tensor Y(p) is parallel for the induced connection on E; and in the same way
VY,.(¢) = 0 for the induced connection on L,,(A3T*M, E).

From this observation, we may deduce that T induces an analytic map between
appropriate Sobolev spaces of sections and provide quantitative estimates for its
radius of convergence. Let us first introduce some notations. Let M and E be
as above, and let ¢ be a positive form on M, let h, be the induced metric on F,
and let V be a connection compatible with ¢. From this data, we may define the
Sobolev W*P-norm (p > 1, k € N) of a smooth section u € C*(FE) as:

k
lullwrs =1V ] o
1=0
where |- ||z is the Lebesgue norm associated with the Riemannian metric g, on M
and the metric h, on E. The Sobolev space W"P(E) is defined as the completion
of C*°(E) for the W*P-norm. This is a Banach space. In the same way, one can

define C*-norms as:

k
lullex = >~ V| co
=0

and the Banach space C*(E) is the completion of C*(FE) for this norm. The
Sobolev Embedding Theorem (see for instance [13, App.A,§C,Th.6]) states that
there is a continuous embedding Li — C! whenever % < #

Let us now fix p € [1,00) and integers [ > 0 and k > 1, satisfying the conditions

E—1

[ >1k/2], and < — (2.3)
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The second condition and the Sobolev Embedding Theorem imply that W*» C
C! C CY. Hence we can talk about positive forms of regularity W*», which are
defined as 3-forms of regularity W*? such that, as continuous sections, they are
valued in the bundle of positive forms. We denote by W*P(A3T*M) the set of
such positive forms. Since W*P(A3T*M) continuously embeds into CO(AT* M),
this is an open subset of the Banach space W*P(AT*M). Moreover, for any ¢’ €
WHEP(A3T*M), we can define T(¢') at least as a continuous section of E. Let E,
@, hy, V be as before, and denote by Cj, 1, v the norm of the Sobolev embedding
WHEP(AST*M) — CYA3T*M) (where the W*P- and C'-norms of differential forms
are defined with respect to V and g,).

Lemma 2.4. For any m >0 and any n1, ..., 1, € WEP(AST*M) we have

I (@) - = llwrier < M CEL Gamllmllwss - (|7 [

In particular if U is the ball of radius R/Cyp v centred at ¢ in WHP(A3T*M),
then Y induces an analytic map U — WH*P(E) and the expansion Y(p +n) =

S o To(@)n™ converges in this domain.

Proof. To make notations lighter, let us write C' = Cjpipv, so that [[7]a <
C|Inllwr.» for any 3-form n of regularity W*P. As the C%-norm is smaller than the
C' norm, Lemma 2.2 implies that if |||y, < R/C then ¢ + 7 is a positive form,

and moreover the expansion:

Y(p+n) = iTm (2.4)

m=0
is convergent with respect to the C%-norm. To prove that T(p+n) € WFP(E), we
want to show that the series also converges with respect to the W*P-norm.

Let us consider each term T, (¢)n™ separately. As we noted before, since V is
compatible with ¢ we have V(T,,(¢)) = 0. Let 0 < j < k and let ny,..., 9, be

smooth 3-forms. As T, () is covariantly constant we have:

_ i . .
VTl i) = Y e Ta(@) Vi - Vo,
Jitim=j jl. o ']m
which yields:
. ! , .
IV (Tl llze < Y %HT @)V Ve (2.5)
Jiteim=j it

Let us fix j1, ..., jm > 0 such that j; +---+ j,, = 7. From Lemma 2.2, we deduce

the following estimate pointwise over M:
|Tm(90>vjl7h T ijnmLp < am|vj1771|<p T |vjm77m|<p‘
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Let us pick iy such that j;, = max{ji,...,jm}. Asl > |k/2] we have j; <[ for all

i # ig, and therefore |V7in;|, is uniformly bounded by ||7;||c:. Hence we have:

1
(U2l 197 nl ) < ller - 90l = e

< C" Hlmllwo - e

where we use ||V7ion;|zr < ||n]lwrr and the Sobolev embedding W*? < C! to

obtain the second inequality. Hence we have the estimate:

1T () V71 - V0o < C™ || llwis = - |1 [

Reinjecting this inequality into (2.5) and taking into account that the sum of

the multinomial coefficients 37', over all combinations of ji,...j, such that

J1+ - Jm=Jis m, we finally obtain:

IV (Con( ) - )z < 0 C™ Lt < = [l e

and therefore, summing over j =0,..., k:

k
[T (@) - - N[ < (Z mj) C™ L aw|Imllwes -« - |7l wer
=0

k+1 Om—l

<m || llwrtw = = ([0 [yt

The above inequality holds for any smooth 3-forms 7y, ..., n,,, and by density of
C®(A3T*M) in W*P(A3T* M) we deduce that T,,(¢) induces a bounded m-linear
map WHEP(AST*M) x - - - x WEP(A3T* M) — WHP(E) with operator norm bounded
above by m*1C™ 1a,,. As the radius of convergence of the series 3 a,,t™ is
bounded below by R > 0, the radius of convergence of the series . m**1C™ 'q,, t™
is greater or equal to R/C'. Therefore the expansion (2.4) converges in W*P-norm if
Inllwee < R/C, and as W*P(E) is complete this implies that Y(¢p+n) € W*P(E).
Moreover, if U is the open ball in W#?(A3T*M) of radius R/C centred at ¢, then
the induced map Y : U — WkP(E) is analytic. O

2.1.2 Uniform estimates for the Levi-Civita connection. In this part, we
let ¢ be a smooth positive form on the compact manifold M, and let £ and h,, be
as before. However, from now on V will be the Levi-Civita connection associated
with ¢ (which we do not assume to be compatible with ) and we denote by V' the
canonical connection associated with ¢ (which is compatible). Recall from §1.1.2
that these connections are related by V = V'+7(¢), where 7(¢) € Q(T*M T M)
is the torsion of ¢. Finally, W& and C% will denote the norms defined with respect
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to the connection V and the metrics g, and h,,, and similarly for V’. The norms
W@’p and W@’,p are equivalent, and so are C& and C%&, but for our purpose it is

important to have precise bounds. This is the object of the next lemmas.

Lemma 2.5. Let k > 1. Then there exists a polynomial function Py with nonneg-

ative coefficients, depending only on the integer k and the representation (p, W),
such that Py(0) = 0 and for all u € C*(E) we have

L+ Pelllr(@)ller-)) i, < llullos, < 1+ Pe(llT(@)lce-))llullcr, -
Proof. 1f u is a smooth section of £ we have
Vu=V'u+71°(p) - u (2.6)

where we wrote 7°(p) = p.(7(¢)) € Q' (End(E)). By an easy induction, we deduce
that for any k > 1 there is a formula of the type

Viu=(V)fu+ Yo Abmgigna V() VIR (0) - (V)
m=1 g1+ jm+l<k—1

where Ay ;. ;.0 are some combinatorial coefficients, which for a given k vanish
identically when m is large enough, so that the sum is finite. Moreover we can
write VITP(p) = p.VIT(p) as a section of (T*M)® @ End(FE), and thus there are

constants Bj, j ; depending only on the representation (p, W) such that
VT (@) -+ NI (0) - (V) 'uly < Bjy il V()| - - [V 7(0) o (V) ]
< By gl (@) | (V)

everywhere on M. Taking the supremum over M we obtain an inequality

lullce, < (L+ Prlll7 (@)l e l[ullc,

for some polynomial P, with nonpositive coefficients depending only on the choice
of representation and such that P.(0) = 0. For the other inequality, we may use

the identity (2.6) and an induction to find a formula of the form

(Vru=Viu+ Y S Ayt V() VIR () - Vi
m=1 ji+-jmHI<k—1
where for a given k the coefficients Ay ,, . . ; vanish identically when m is large

enough, and apply the same reasoning. O

Remark 2.6. The point here is that Py does not depend on the manifold M or the

Go-structure ¢. In that sense, this bound is universal.
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Lemma 2.7. Let k > 1. Then there exists a polynomial function Q) with nonneg-

ative coefficients, depending only on the integer k and the representation (p, W),

such that Q1(0) = 0 and for all u € W*P(E) we have

(14 QeI (@ llox-))Hlwllwsp < llullwsr < (04 QeI (@) lox- ) llullyep-

Proof. The proof is exactly the same as for the previous lemma, except that we

integrate instead of taking the supremum. O]

Since the torsion 7(¢) is represented by (dy, dO(y)) we immediately obtain the

following consequences:

Corollary 2.8. Let k > 1. Then there is a constant €, > 0, depending only on the
integer k and the representation (p, W), such that if ||d<,0||0€_1 + ||d6(<,0)||c€_1 < €
then for allu € C*(E)

2_1““”0@/ < ||U||c@ < 2||U||c@,-

Corollary 2.9. Let k > 1. Then there is a constant €, > 0, depending only on the
integer k and the representation (p, W), such that if Hdgo||c€71 + Hd@(gp)HC@4 < ¢},
then for all u € WkP(E)

2 ullyep < ullyzr < 2y

Let us now consider as before a bundle map Y : A37T*M — E induced by an
equivariant map T : A3R: — W. We also fix p € (1,00) and integers [ > 0, k > 1
such that conditions (2.3) (which we recall below) hold:

[ >1k/2], and

Then we can adapt Lemma 2.4 to Sobolev norms defined with respect to the

Levi-Civita connection of g, for Gy-structures with small torsion:

Lemma 2.10. There is a universal constant €, depending only on the integers
k,l and the representation (p, W), such that the following holds. Assume that
HdgoHC@_l + ”d@(@)“cg—l < e, and let Cyp1. be the norm of the Sobolev embedding
WHh2(AST* M) — CYA3T*M) with respect to the norms We? and CL. Then for
any m >0 and any 0y, ..., 0m € WFRP(AST*M) we have

HTm(@)nl e 'nm“vv@vp < 8mmk+lolzlp_,ll,cpam||nl||W€’P T HanWg*P'

m

In particular the radius of convergence of the expansion Y (p+n) = >0 Tr(p)n

with respect to the W&P-norms is greater or equal to R/(8Ckpi.,)-
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Proof. Let €;; > 0 be smaller than the constants 627 3> €, Provided by Corollary
2.9 for the representations A’R% and (p, W) and than the constant € 53 associated
with the representation A’R%. Assume that Idpllcr— + 1dO(p) a1 < €xs. By

Lemma 2.4, we know that
[T () - '77m||W€}p < mk+10n?p7 l,sp,v'amHanWkP T HanWg/P-
Now as [|7(¢)||cr-1 < €, z3, €],y We have

(O I T
and

1ol - nnllwier < 20T (@) il e
and therefore we deduce

1) =ty < 2" MO rttmllim o =< 10m -

Now we need to control the Sobolev constant Cy, ;1 o.v' by C 1. Since ||7(¢)||ci-1 <
€03, for any n € WHP(A3T*M) we have

Inllet, < 2lnlley, < 2Ckpie ITIHW(;p < 4Ck,p,l,<p\|77||wg,p

which yields the desired inequality. The rest of the lemma easily follows. D

In the next paragraph, we shall be considering the equivariant map © : A3 R: —
A4]R§, and the radius of convergence R and the uniform constants e, €, and €
will implicitly be the ones associated with © and the natural representation of
GL,(7) on A'R:. If (M, ) is a compact manifold endowed with a Go-structure
and n € Q3(M) satisfies ||n]|co < R, then ¢ + 7 is a positive form and

o0

O(p+n) = Z Om (¢ @(80)"’[/@0(77)"‘[7@(77)

where L,(n) = ©1(p)n = 5 *mi(n) +#m7(1) — mor(n) and Fy(n) = 3, Om(@)n™
(see (1.4)). For the applications of this chapter we will not need to control the full

expansion; instead we will use the following consequence:

Corollary 2.11. For any constant A > 0, there exists a universal constant 6y 4 >
0, depending only on A and the integers k, 1, such that if Hd<p||0@4 +||d@(g0)||0@71 <

er and [|mllyse, 102l yar < 0k1a/Chpre then
| Fp(m) — Fw(%)HW@P < ACkpilm — 772||W@7p(||771||wgp + ||772||W@»p)~
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Proof. Let us take ||n||;yxe, ||72]/jyrr < 6/Ckpie where § < R/8 is to be deter-
\4 \%

mined later. Then we have

Fyo(m) — Fy(ne) = i Om()n — Om()ns?
= i >~ Ol — )iy

By the previous corollary we have estimates on each term:

19 (@) — m)iring' ™ e < 8™ LOE L am lim — 772||ng||n1||€V@,pllnz|l”V;§i_j

< 8mmk+1ck,p,l,<p5m72am|’771 - 772HWg4’(H771Hm/§4’ + H772”Wg’1’)'

From this we deduce that

1Om (D)0 =tm ()05 iy < 8™m 2 Chk 1 0™ 2 am =12y (1l + 112y ).

As the series Y, 8™m**2a,, has nonzero radius of convergence, we can choose

0 < 014 < R/8 such that

o0
> 8™ m a0 < A

m=2

which satisfies the desired property. O]

2.1.3 The deformation theorem. Let us now outline the deformation argu-
ment argument of Joyce [66, §10.3] for constructing torsion-free Go-structures.
The starting point is to consider a compact manifold M” equipped with a closed
Ga-structure ¢ with small torsion, and seek a nearby torsion-free Go-structure
@ = ¢ + dn in the same cohomology class. In [66, Theorem 10.3.7], Joyce proved
that there exists a universal constant 9 > 0 (which we might assume to be smaller
that the radius of convergence R previously defined) which does not depend on M

or  such that:

Theorem 2.12 (Joyce). Let (M, ) be a compact manifold equipped with a closed
Go-structure. Suppose w is a 2-form on M such that ||dw||co < e and ¥ a 4-form
on M such that dO(p) = di and ||Y||co < go. If (w,v) satisfy:

Aw +d” (<1 + ;(dw, <,0>> w) + *dF,(dw) =0

then @ = ¢ + dw s a torsion-free Go-structure on M.
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In the remainder of this part, we use this theorem together with the uniform es-
timates of §2.1.2 to prove that provided ¢ is a closed Go-structure with sufficiently
small torsion in the C* sense and we can choose ¢ with small W*+1:P Sobolev
norm (for p > 7), then ¢ can be deformed to a C*-close torsion-free Go-structure
within the same cohomology class. Note that from now on, all Sobolev norms on
(M, ) will be defined with respect to the Levi-Civita connection of g, and will
be denoted by W*? instead of Wé’p , and similarly for C* norms. Our argument is

based on the following standard fixed-point theorem whose proof will be omitted:

Proposition 2.13. Let (A1,] - ||l1), (As, ] - |l2) be Banach spaces and f : Bs C
A1 — As be a continuous map defined on the ball of radius § centred at 0 which

can be written as
f(u) = f(0) + L(u) + F(u)

where L : A1 — Ay is a bounded linear map which has a bounded inverse and

F: Bs — Ay is a continuous map such that
[1F(u1) = F(u2)|l2 < Cllur — ual1(lual[s + [Juallr)

or some constan > 0. € e € operator norm o T oana assume a €
f tant C > 0. Let Q be the operat f L' and that th

following inequalities hold:

QIF(0) <d/2, CQI<1/4

Then there is a unique u € Bs such that f(u) = 0, and moreover

[ully < 2Q£(0)]2.

We shall now prove the following theorem:

Theorem 2.14. Let k,1 > 1 and p € (1,00) satisfy the following conditions:

E+1-—1
7

1

[ >1+|k/2] and <

Then there exist a universal constant kK > 1 and a constant € = €, > 0 depending
only on k, | and p such that the following holds.

Let (M, ) be a compact T-manifold endowed with a closed Go-structure, and
suppose that || dO(p)||cr < €xt1,. Assume moreover that 1 is a 4-form such that
dO(p) = dv and ||¢||co < €y, where gq is the constant of Theorem 2.12. Let us

moreover denote by:

e ) = Qi the operator norm of the Green’s function Ga of the Laplacian,
Ga : (M, o) N WEP(A2T*M) — S2(M, o)t N WHE2P(A2T*M).
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o C=sup{Cpi-1,4, Citipie} the mazimum of the norms of the Sobolev em-
beddings WEP(A*T*M) — C'=H(A*T*M) and WHTLP(A*T*M) — CY(A*T*M).

Then if the inequality
C1+Q(1+Q+C)(A+Clldbllwen)[¢]lwrsrr < e

holds, there exists a co-exact 2-form w with ||@||yr+2s < 8KQ|Y||wr+10 such that

@ = p + dw is torsion-free. Moreover ||@ — ||t < 462QC ||¢||wet1p-

Remark 2.15. We might in particular choose £k =1 > 1 and p > 7 in this theorem.
Therefore, a control on the C*-norm of the torsion and on the W**P-norm of 1
yields a C*-estimate on ¢ — ¢. The main reason to allow &, p and [ to satisfy the
more general conditions of the theorem is that it allows us to work with p = 2 if
k+1—11is large enough. This sometimes simplify the analysis since L2-spaces are
in general better behaved than other LP-spaces. In fact this will not play a role in
our application to twisted connected sums in the next section since the analytical

results of Chapter 3 will be valid in the LP-range for any p € (1, 00).

We shall make a few comments and introduce some notations before proving
this theorem. Firstly, let us comment on the restrictions on k, [ and p. We
require % < w in order to have the Sobolev embeddings W*+? — (! and
WhP — C=1. Moreover, the condition [ > 1+ |k/2] implies both [ — 1 > |k/2]
and [ > (k + 1)/2; this allows us to use Corollary 2.11 for the triples (k + 1,1, p)
and (k,l—1,p). In fact we will only directly use this corollary for (k+ 1,1, p), and
an adaptation of its proof for (k,[ —1,p).

Secondly, because the Levi-Civita connection V of g, is torsion-free, the ex-
terior differential d : Q*(M) — Q°(M) coincides with the antisymmetrisation of
V. Q(TM) — C®°(T*M @ A*T*M) (up to a combinatorial constant depend-
ing on the degree of forms). Hence there exists a universal constant x such that
|dn| < k|Vn| for any n € Q*(M). Me might assume x > 1. Moreover, the Hodge
operator x is an isometry of the exterior algebra A*T*M, whence |d*n| < k|Vn|
for the same constant. This implies uniform estimates ||dn||yr, < &||9||+r+1.0, and

similarly with C'-norms and if we replace d by d*.

Proof of Theorem 2.14. The idea is to apply Proposition 2.13 to the function

f(@) = % + A+ 3 (dw, £)) + #dF, (deo)

defined on a ball Bs, of radius §; = 5’“;% centred at 0 in the Banach space

HHM, o) N WHEF2P(A2T* M) and taking values in J%(M, o)t N WHP(A2T*M).
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Here 0j41,,1 is the constant of Corollary 2.11 for A = 1. Our choice of ; is made
to ensure that ||dw||yye+1o < 0pt141 if @ € Bs,. In the notations of Proposition
2.13, 1(0) = d"w, L(w) = A + 1d* ((dw, ¢)) and F(w) = dF,(de).

Let us begin with a quadratic estimate on F. If ||y ||yyr+e, [|0|pwrre < 01 then

| dFy(deoy) — *dFy(dwa)|lwer < K| Fp(dwn) — Fo(dwy)||ween

< &*Cllw — @allwrrza (|1 lwrres + @2 ]lwrren)

where the second inequality follows from Corollary 2.11.

Now we want to estimate the norm of the inverse of the linear map L. Since
L(w) = A(w + 5Gad* ((dw, ¢)1)), any condition ensuring that the norm K of the
linear map w — zd*((dw, p)1))) satisfies 2KQ < 1 implies that L is invertible
with ||L7!|| < 2Q. Now we have the inequality

1d* ({dzo, ))) lwer < Kll{dw, @)Y [lwrri.

In order to estimate the norm on the second line, we might use the Sobolev em-
beddings W+l < C! and WkP — C'~! as in the proof of Lemma 2.4. When
calculating the covariant derivatives of (dw, ¢)1), we encounter two types of terms.
The terms of the first type are of the form (V/'dw, )V7; such terms have
(Vitdw, o) V| < 7|Vitdw|, - [V (since |p|, = 7) and j; + j3 < k+ 1. They
can be estimated using the Sobolev embedding W*+1» — C! as in the aforemen-
tioned lemma. The second type are terms of the form (V/'dw, V72p) V731 where
Jo # 0. Since Vi is essentially the torsion of ¢ which is represented by dO(y¢) = d,
these terms admit the bound [(V7'dw, V2@) V|, < K'|Vitw|- V2 Ldy|, | Vi)
for some universal constant x’. Here j; + (jo — 1) + j3 < k and we can estimate

these terms using the embedding W*P? < C'=! this time. Hence we obtain
1d" ({(dew, )0)) lwnw < K"Cllw|lwrsen [Y]lwrero (1 + Clldd|lwen).
for some universal constant x”. Therefore if
26" QC [ ¢ lwrsrn (L + Clldp[lwes) < 1

then L is invertible and ||L™!|] < 2@Q. This condition will be satisfied provided the
constant € in the statement of the theorem is chosen to be small enough.
Assuming that this is the case, let us define 6 = 8xQ||¢||yr+1». Then

L= Y lwes < 2QK][W[lwerrs = 6/4 < 6/2 (2.7)
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and hence ¢ satisfies the first condition of Proposition 2.13. For ¢ to be smaller

than d;, we need to have

8K2Q0|W‘|Wk+1,p < Opt1,0p-

This is also satisfied if € is small enough. Finally, the second condition in Propo-

sition 2.13 reads
2Q - K2C - 8KQ||Y ||yt = 165*Q*C|1||yrr1p < 1/4

which is also implied by the condition of the theorem provided we chose a small
enough ¢ > 0.

We might therefore apply Proposition 2.13 for § = 8kQ||¢||yyr+1.» since k > 1.
Hence f(w) = 0 has a unique solution such that ||o||ys+2, < 0, which must more-
over satisfy |@|wrizo < 4Q|d* llwre < 46Q|Y]lwrrro. Hence ||dow|lyrrin <
4k2Q|1b||yr+1» and by the Sobolev embedding Wk 1P — (! we deduce that
|dw||ct < 42QC ||¢)]|we+1... To apply the theorem of Joyce, it remains to prove
that w is smooth. The main observation is that f, seen as a second-order partial
differential operator, is quasilinear, that is, it is linear in the second-order deriva-
tives (represented by Vdw). Moreover the linearisation at 0 just the Laplacian A,
and because this is an open property the linearisation of f at w will be elliptic if
the C''-norm of w is smaller than a certain universal constant. Given that { > 1
and ||@||cr < 4k2QC||9||wr+1.» < 4k2%e this condition will hold if € is small enough.

Thus we might use a classical bootstrap argument to prove that w is smooth. [

2.2 Improved estimates for the twisted connected
sum construction

We now turn our attention to the construction of compact Gy-manifolds by twisted
connected sum. It was first developed by Kovalev [80], and subsequently fixed!
by Corti-Haskins—Nordstrom—Pacini [29] and further extended by Crowley and
Nordstrém [34, 97]. The main result of this section is the C*-estimate of Propo-
sition 2.16, which is an application of Theorem 2.14 together with estimates on
the Green’s function of the Laplacian that we will derive in Chapter 3, in a much

more general setting.

!The original construction contained a number of geometric caveats which were addressed in the
cited work. In fact, the analysis developed in [80], which partially relies on an adaptation of
[81], is also erroneous (although one can use Joyce’s general existence results to bypass it). The
results of the next chapter provide a way to fix the analytical aspects of the construction, in
addition to improving the known estimates.
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Figure 2.1: An EAC manifold.

2.2.1 Asymptotically cylindrical manifolds. Let us recall a few standard
definitions, starting with the notion of Exponentially Asymptotically Cylindrical
(EAC) manifold. Let Z be an oriented non-compact manifold of dimension n and
X an oriented compact manifold of dimension n — 1. We say that Z is asymptotic
to the cylinder Y = R x X at infinity if there exist a compact K C Z and
an orientation-preserving diffeomorphism ¢ : (0,00) x X — Z\K. The compact
manifold X is called the cross-section of Z. It will often be useful to pick a positive
function p : Z — R such that p(¢(t,z)) =t for (t,z) € [1,00) x X and p < 1
outside of ¢([1,00) x X). Following the terminology of [56], we will call such
function a cylindrical coordinate function.

We say that a Riemannian metric g on Z is EAC of rate u > 0 if we have, for
all integers [ > 0:

Vi (6°9 = gy)lgy = O (e7) (2.8)

as t — oo, where gy = dt*> + gx is a cylindrical metric on Y = R x X, Vy the
associated Levi-Civita connection and |- |4, the associated norm on tensor bundles.
The notion of EAC manifold can be refined in the case of metrics with special

holonomy. An EAC Gy-manifold (Z, ) of rate u > 0 is required to satisfy
So=ypot+n,  [Vynly =0(e") VI=0

as t — 0o, where g is a translation-invariant torsion-free Go-structure on R x X.
The cross-section X is then a Calabi—Yau threefold, and has a unique Calabi—Yau
structure (wy, o) such that ¢y = dt A wy + Rey. In this case, we may assume

that the metric gx is induced by (wq, ).
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2.2.2 Twisted connected sums. Let us now outline the twisted connected sum
construction. The building blocks are a pair of EAC Gy-manifolds (77, 1) and
(Za, p2) of rate p > 0, asymptotic to a cylinder R x X. Let us denote by ¢g; the
asymptotic translation-invariant model for ¢;. The Ga-structures ¢, and ¢, are
said to be matching if there exists an isometry v of the cross-section X such that
the map

TiRxX 2>RxX, (tz)— (—t,v(x))

satisfies Yoo = @o1. If 705 = dt N wp; + Re Qg for Calabi-Yau structures

(wo,i» Q20,) on X, the matching condition amounts to:
’7*(,«)072 = —Wo,1, ’}/* Re 9072 = Re 9071. (29)

In all known examples [80, 30, 97], such matching pairs are trivial circle bundles
over EAC Calabi-Yau threefolds (or quotients thereof in the case of Nordstrom’s
‘extra-twisted’ connected sum), and the cross-section is isometric to the product
of a K3 surface with a flat 2-torus (or the corresponding quotients). Much of
the subtlety of the construction lies in the choice of isometry =, which is usually
designed so that compact manifold obtained by gluing Z; and Z, along ~ has finite
fundamental group in order to construct manifolds with full holonomy Gs. These
details go beyond the scope of the present chapter and do not affect our analysis,
so we refer to the original papers for more information. In fact one could also do
an ‘untwisted’ connected sum, resulting in a compact manifold which is globally
a trivial circle bundle, and by dimensional reduction this yields a construction of
compact Calabi—Yau threefolds.

Let us denote by ¢ the minimum of i and of the square roots of the smallest
non-trivial eigenvalues of the Laplacian acting on 2- and 3-forms on X, and pick
diffeomorphisms ¢; : (0 x 00) x X — Z;\K; of the cylindrical ends. The closed

forms ¢; and O(yp;) admit an expansion:

0 = pip +dni,  9;0(pi) = O(pip) + d&;

where n; € Q%((0,00) x X), & € 93((0,00) x X) and all their covariant derivatives

have exponential decay in O(e™) as t — oo, for any 0 < § < o (see §3.4.1). Let

us pick a smooth cutoff function y : R — [0, 1] such that xy =0 in (—oco, —%] and
1

X = lin [3,00). Then we can build 1-parameter families of closed forms:

pir =i —d(x(pi = T)(0;)'m),  Oir =O(pi) —d(x(pi — T)(¢;')&)

where p; are cylindrical coordinate functions on Z;. For T large enough ¢; r is a

Go-structure on Z;, which is closed by construction. Then we can build a family
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of compact manifolds {(Mr, ¢r1)}remy,0) in the following way. To construct My,
we can glue the domains {p; < T + 2} C Z; along the annuli {T' < p; < T + 2} ~
[—1,1] x X using the identification

0 (TH+1+t,x)~ (T +1—1t,7(x)), V(t,x) € [-1,1] x X. (2.10)

Since the matching conditions (2.9) are satisfied, we can patch up ¢ r with a1
in order to obtain a closed Gs-structure ¢ on Myp. Similarly, patching up ©q p
with ©y 1 we obtain a closed 4-form ©p. Let us write 17 = O(¢r) — O, so that

dipr = dO(pr). By construction, we have estimates of the form:

[z llox + [dO(pr)llex = O (=) (2.11)

for any £ > 0 and 0 < § < o, and since ¥y and dO(pr) are supported in the
gluing region which has uniformly bounded volume this induces similar estimates
for any W*P-norms [80, Lemma 4.25]. It follows from [66, Theorem 11.6.1] that
for T' large enough there is a torsion-free Go-structure ¢ cohomologous to 7 and
such that |@r — @r]|co = O(e™°T) for any ¢ > 0 small enough.

In the next chapter, we will see that the norm of the Sobolev embeddings
WHP — O (in the range where these embeddings are well-defined and continuous)
are uniformly bounded (Proposition 3.5), and that the norm of the Green’s function
of the Laplacian is bounded above by O(T?) (Corollary 3.38). Hence Theorem
2.14 yields the following improved estimates with control on an arbitrary number

of derivatives:

Proposition 2.16. Let k € N and 0 < § < 0. Then there exists a constant C' > 0
such that for T large enough:

|67 — prllex < Ce™T.

With these estimates, we can approximate the Laplacian operator associated
with ¢ by the Laplacian operator associated with pr. In particular, the spec-
tral estimates which we will derive in the next chapter (Theorem 3.8), using the
‘unperturbed’ metric g,,., also apply to the metric g5 . In Remark 3.9 we will
mention some physical consequences of this result, in relation to the swampland

distance conjecture discussed in the introduction.
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Chapter 3

Spectral properties of twisted
connected sums

This chapter, whose material appears in the article [82] by the author, is con-
cerned with the analysis of differential operators for a class of ‘neck-stretching’
problems where two exponentially asymptotically cylindrical (EAC) manifolds are
glue together in order to form a family of compact manifolds whose diameter goes
to infinity. A typical example of such situation is the twisted connected sum con-
struction of compact Go-manifolds which we saw in the previous chapter (Section
2.2). Our original motivation came from the swampland distance conjecture in
physics (see the introduction): along such deformations, physicists expect an in-
finite number of eigenvalues of the Laplacian acting on differential forms (which
physically correspond to a mass spectrum) to decay at the same rate'. Hence an
interesting question is to understand precisely the asymptotic behaviour of the
Laplacian in the neck-stretching limit.

This type of neck-stretching problems has many applications beyond twisted
connected sums in various branches of analysis, geometry, topology and mathe-
matical physics (see for instance the review [47]). It has notably been used for
proving index theorems for manifolds with boundary [9] or corners [57], and the
analysis of such problems is closely related to the analysis of differential operators
on noncompact manifolds (e.g. Lockhart-McOwen theory for EAC manifolds [89],
or Melrose’s general theory of b-calculus [93]). Concerning the spectral aspects,
a very precise development of the asymptotic behaviour of the eigenvalues of the
scalar Laplacian was notably obtained by Grieser [46] in the case of manifolds

connected by neck regions which are exact cylinders.

IPhysicists expect that this is the typical behaviour for infinite-distance limits in the moduli
space. Twisted connected sums are an example of such infinite-distance limits for the volume
diverges to infinity in the neck-stretching limit (see §4.1.1, and also Lemma 4.18).
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In the present chapter, we develop a general method to analyse the mapping
properties of a class of adapted differential operators in the neck-stretching limit
of a connected sum of two EAC manifolds. Our method is relatively elementary
in two ways: first, we only use the classical Lockhart-McOwen theory and some
results on the analysis on Riemannian cylinders without appealing to more sophis-
ticated machinery (like b-calculus), which allows us to give a mostly self-contained
exposition; and second we work with unweighted Sobolev spaces on the family of
compact manifolds. Let us briefly justify this choice. In degenerate limits, it is
classical to introduce weighted Sobolev spaces in order to find a Fredholm inverse
for the relevant differential operator with uniformly bounded norm. However, in
applications it is not necessarily a problem if the operator norm of a Fredholm
inverse diverges, as long as its growth rate remains under control. The real is-
sue is to identify the right notion of substitute kernel and cokernel, and to build
a Fredholm inverse which is close to being an actual inverse on the complement
of those. This involves a rather delicate ‘matching problem’ for the obstructions
coming from each of the pieces which are glued together, and this problem does
not have anything to do with a particular choice of weight?. A second reason for
working with unweighted spaces is that we will be interested in the eigenvalues of
the Laplacian, which are more directly related to the estimates in the L2-range.

Let us now outline the plan for this chapter. In Section 3.1 we describe the
general gluing problem that we are interested in, define the notions of adapted
operators and of substitute kernel and cokernel that we will be working with, and
state our main results. Section 3.2 is concerned with the analysis of translation-
invariant PDEs on cylinders and contains the main technical ingredients underly-
ing our proofs. Section 3.3 is dedicated to the analysis of the mapping properties
of adapted operators in the neck-stretching limit. Under some assumptions, we
prove a theorem on the invertibility of adapted operators (Theorem 3.6), but our
method is more general and we also comment on how to adapt it in different con-
texts. Finally, in Section 3.4 we apply our techniques to the study the asymptotic

behaviour of the low eigenvalues of the Laplacian.

2This is notably an issue in Kovalev’s analysis for the twisted connected sum construction [80]. In
this case, the relevant operator is the Laplacian, and the actual obstructions are topological by
Hodge theory; but by introducing weights we obtain an approximate inverse for the Laplacian
where the substitute kernel and cokernel have the wrong dimension. This issue can be solved
by using the analytical framework developed in this chapter.
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3.1 The neck-stretching problem

In this section we explain our setup and formulate the main results of this chap-
ter. The gluing problem under consideration is described in §3.1.1, in which we
introduce the building blocks and the class of adapted operators that we are inter-
ested in. In §3.1.2 we motivate and introduce the notions of substitute kernel and
cokernel for adapted operators, following ideas present for instance in [69, 71] or
[81]. Our main results are discussed in §3.1.3, where we also outline our strategy

of proof.

3.1.1 Model gluing problem. Let (Z,g) be an exponentially asymptotically
cylindrical (EAC) manifold of rate p1 > 0 (see §2.2.1). By definition, there is a
compact subset K C Z and a diffeomorphism ¢ : (0,00) x X — Z\K, where
the cross-section X is a compact manifold endowed with a metric gx, and ¢*g =
gy + O(e ™) where gy = dt* + gx on the cylinder Y = R x X (and similar
estimates hold for derivatives of any degree). We can also pick a smooth cylindrical
coordinate function p > 0 on Z such that p(¢(t,z)) =t for any ¢t > 1 and z € X.

Given the above data, we may define a notion of adapted bundle as follows.
Any vector bundle Fy — X equipped with a metric hg and a connection Vg can
be extended to a vector bundle £, — Y with translation-invariant metric and
connection (hg, V) (see Section 3.2 for more details). We call such bundles on Y
translation-invariant vector bundles. Let E — Z be a vector bundle on Z, endowed
with a metric h and a connection V. We say that E is an adapted bundle on (Z, g)
if there exist a translation-invariant vector bundle (E,, hy, V) on Y and a bundle
isomorphism ¢ : EOI(

0,00)xx — Elz\k covering ¢, such that for all integers [ > 0:

DY@k — hg)lo = O(c™™), and [VH(@LV — To)lo = O () (3.1
as t — oo, where | - |¢ is the norm induced by the metrics gy and hy.

Remark 3.1. In this chapter, we will consider complex vector bundles endowed with
hermitian metrics for convenience, but the results of course apply to real vector

bundles by taking their complexification.

We may also define the notion of adapted differential operator between adapted
bundles. Let E, F be adapted bundles on Z and P : C*(E) — C*(F) be a
differential operator of order £ > 1. If w is a smooth section of E, defined over
the half-cylinder (0, 00), let:

Pu = &' Pdpu. (3.2)
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This defines a differential operator P : C®(E,) — C*(F,) over the cylinder
(0, 00) x X, modelling the action of P on sections supported in Z\ K. The operator

P can be written in the form:
k .
P=> A (03] (3.3)
Jj=0

where 0; is the covariant derivative in the direction % for the connection V, on F
(which coincides with the Lie derivative of % because of translation-invariance),
and Aj_;(t) : C®(Ey) — C*®(F}) are differential operators depending smoothly
on t. We say that P is adapted (with exponential rate p > 0) if there exists a
translation-invariant differential operator Py : C*°(Ey) — C*(Fp) of the form:

k .
=0

such that for any smooth section u of E defined on (0,00) x X and for any [ > 0
and 0 < 7 < k we have:

IVh(Ars (t)u = Apju)ly = O ( > |vau|o) (3.5)

i<l
as t — oo. That is, we essentially want the coefficients of P — P, and all their
derivatives to have exponential decay when t — oo. The operator Py is called
the indicial operator of P. Note that the formal adjoint of an adapted P is also

adapted, and its indicial operator is naturally Fj.

Ezxample 3.2. The tensor bundles TZ%®* @ T*Z®", the bundle of differential forms
A¥T*Z, or any direct sums or tensor products thereof are adapted (endowed with
the metric induced by g and its Levi-Civita connection). Moreover, in those cases
we might choose the bundle isomorphism covering ¢ to be the push-forward map.
The differential operators d + d* and A = dd* + d*d are adapted.

We now describe the general gluing problem that we are interested in. Let Z;
and Z5 be two EAC manifolds and assume that the cross-section of Z, is the same
as the cross-section X of Z;, but with opposite orientation. By definition, there
exist compact subsets K; C Z; and diffeomorphisms ¢; : (0,00) x X; — Z;\K;
where X; = X = X,, and we can pick cylindrical coordinate functions p; : Z; —
R.o. For any 7" > 0, we can construct an oriented compact manifold My by
gluing the domains {p; < T + 2} C Z; and {py < T + 2} C Z, along the annuli
{T < p; <T+2} ~[-1,1] x X with the identification:

(T +1+tx)~p(T+1—tz), V(itz)el[-11] xX. (3.6)
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P2 T+1 :
My P
=T -1 0 1 T PT

Figure 3.1: The gluing construction and neck-stretching.

Define a smooth function pr on Mr by:

_Jp—=T-1 in {¢p <T+2}
pr= T+1—py in {pp<T+2}

This is well-defined as p; —T — 1 coincides with T4 1 — py under the identification
(3.6). Intuitively, the function pr parametrises the neck of M. In particular, the
domain {|p| < T'} is diffeomorphic to the finite cylinder [T, 7] x X (see Figure
3.1). Our goal is to study the mapping properties of elliptic operators defined
on Mr as T becomes very large, and relate it to the corresponding properties of

operators on Z;.

Remark 3.3. In the twisted connected sum construction (see §2.2.2), we considered
a variation of the above gluing construction where the EAC manifolds Z; and Z,
are glued along a non-trivial isometry v : X — X (see (2.10)). From the point
of view of the analysis this does not change anything; in fact if we replace ¢o by
¢9 o (id x7y) we can see that the twisted connected sum is a particular case of our

seemingly ‘untwisted’ gluing problem.

Suppose that the manifolds Z; are endowed with EAC metrics g; asymptotic

to the same translation-invariant metric gy = dt?> + go on Y = R x X. It will also

be useful to fix a cutoff function x : R — [0,1] such that x = 0 on (—oo, —1] and

X=1on [} ,+00). If T € R we let x7(t) = x(t — T'). Then, for T" large enough
9ir = (L= xz(pi))g: + xr(pi)gy
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is a Riemannian metric on Z; which coincides with g; on {p; < T — 1} and with
gy on{p; > T+ %} Moreover, the difference g; — g; 7 and all their derivatives are
uniformly bounded by O(e™*T). Note that here we implicitly identify Z;\ K; with
the half cylinder (0,00) x X; to make notations lighter. We can patch ¢; 7 and

g2, to form a Riemannian metric gy on My, defining:

o = gir it pr <0
T = . .
Gor if pr>0

Similarly, if we have adapted bundles (E;, h;, V;) on Z; such that their asymp-
totic models are both isomorphic to the same translation-invariant vector bundle
(Ey, hy, Vi) on R x X we can use the same cutoff procedure to patch them up on
M7 and form a vector bundle Er with metric hr and connection V.

Consider matching adapted bundles E;, F; on Z; (i = 1,2) asymptotic to the
same translation-invariant bundles E,, F;, and adapted elliptic operators P; :
C>®(E;) — C*(F;) of order k. Denote by P, (z,0;,0) : C®(E,) — C®(Fy)
the indicial operator of P;, where we use 0, as a loose notation for the derivatives
along the cross-section X. In order to patch up these operators we need to assume

the following compatibility condition [81]:
Poo(z, 0z, 0t) = Pro(x, 0, —0). (3.7)
Assuming that it is satisfied, define:
Pir = (1= xr(pi)Pi + xr(pi) Pio

which coincides with P; for p; < T—% and with P, o for p; > T—i—%. For large enough
T, the operators P;r are elliptic, and moreover the coefficients of P, — P, and
all their derivatives are uniformly bounded by O(e*“T). Patching P and Py r
together in the same way as for the metrics g; 7, we obtain a family of operators
Pr : C®(Er) — C°°(Fr) which are elliptic for large enough T' (see Figure 3.2).
Elliptic regularity on compact manifolds implies that the action of Pr on Sobolev
spaces of sections induce Fredholm maps. Our goal is to construct Fredholm
inverses for these maps, with a good control on their norm as 7" — oo.

Before explaining our results in more detail in the next part, let us make our
conventions for Sobolev and C'-norms explicit. For p > 1 and [ € N, the WP-norm

of a section u € C*°(Er) can be defined as:

lullwis = >~ IVl (3.8)

<l
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Figure 3.2: The metric g7 and the operator Pr.

where the fibrewise norm of V%u is computed with respect to the metrics hr,
gr and we integrate over the volume form of gr. The Sobolev space W' (Er) is
defined as the completion of C*°(Er) for the W'P-norm. In the same way, the C'
norm of a smooth section u € C*°(Er) will be defined as
lullet = >~ [ Viulleo (3.9)
Jj<i

and C'(Er) is the completion of C*°(Er) for this norm.

In Section 3.3, we will see that the adapted operators P; on the EAC manifolds
Z; induce bounded maps W**P(E;) — WP(E;) and satisfy a priori estimates

[ullwrser < C([[Pullwer + [lul[»)-

These estimates for P; induce a priori estimates for the family of operators Pr on

M which are uniform in T
Proposition 3.4. With the above setup, let p > 1 and [ € N. Then the map
Pr: WHhe(Br) — Wh(Fr)

is uniformly bounded as T — oo. Moreover there exist constants C,C" > 0 such

that for T large enough and for any u € W*T'P(Er) we have:
ullwssir < C (|Prullwes + [lullze) -

In the same way, there are continuous embeddings WP (E;) — W*4(E;) and
WrP(E;) — CY(E;) whenever é < é + == and % < %l, for the spaces of sections

over the EAC manifolds Z; [88]. Hence on My we deduce the uniform boundedness
of the Sobolev embeddings:

Proposition 3.5. Let p,q > 1 and r,s,l € N such that é < é%— == and %

Then there exist constants C,C" > 0 which do not depend on T such that

<7“l

n

|ullwse < Clullwre  and |ulle < O |ullwre, ¥V u € W™P(E7).
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By elliptic regularity, the Py can be inverted in the L?-orthogonal complements
of the kernels of Pr and of its adjoint. However, since the dimensions of these
spaces are not deformation-invariant (only the index is), they do depend on the
precise way we take cutoffs to define our gluing, and so will the norm of the inverse
of Pr. In order to make general statements, we would like to define notions of
substitute kernel and cokernel in the fashion of [69] (see also [71, §18]), determined
by the gluing data and in the complement of which we have a good control on
the norm of the inverse of Pr. Under the restricting assumption that the map
induced by the indicial operator Fy = P;( on Sobolev spaces of sections on Y is
an isomorphism, these have been defined and studied in [81]. However in many
cases of interest this assumption is not satisfied, as the indicial operator may have
real roots (see next part). Thus we need to define notions of substitute kernel and

cokernel adapted to that case.

3.1.2 Substitute kernel and cokernel. In order to define the substitute ker-
nel and cokernel, a good understanding of the mapping properties of translation-
invariant operators on cylinders and of adapted operators on EAC manifolds is
crucial. For completeness, the results that we need are gathered in §3.2.1 and
§3.3.1. Some original references are [3], [89] and [93].

In the situation described in the previous part, let By = Pio : C®(E,) —
C*°(F,) be the indicial operator of P;, acting on the cylinder Y = R x X. Points
in Y will be denoted by y = (¢,x). A particularly important role in our analysis

is played by solutions of the homogeneous equation Pyu = 0 of the form:
u(t,z) =" eyt x)
j=1

where Ay, ..., A, are real numbers and the sections u; are polynomial in the variable
t. Such solutions are called polyhomogeneous solutions of rate 0, and we denote
by & the vector space they span. As a matter of general theory, this is a finite-
dimensional space, and in particular there are only finitely many values A € R
such that the homogeneous equation Fyu = 0 admits a non-trivial solution of the
form u(t,z) = e?uy(t,x), where uy is polynomial in t. These values are called
the real roots of Py (see Section 3.2 for a detailed discussion). In Section 3.2 we
will see that each root A; has a certain order d; € N* such that the sections u; in
a polyhomogeneous solution of rate 0 are polynomials of order at most d; — 1 in
the variable t. We will usually denote by d the maximum of the orders d;. Let
us point out here that the real roots of the formal adjoint F; are the same as

the real roots of F,, and denote by &* the space of polyhomogeneous solutions
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of rate 0 of Pyu = 0. It follows from the compatibility condition (3.7) that the
space of polyhomogeneous solutions of Psgu = 0 of rate 0 is {u(—t,z),u € &},
and similarly for the adjoint operators.

Let us denote by .%; the space of solutions of Pyu = 0 with sub-exponential
growth and 7, the subspace of decaying solutions, for i = 1,2. By Lockhart—
McOwen theory ([89], see also §3.3.1 for more details), % has finite dimension
and each of its elements is asymptotic to a polyhomogeneous solution of P;gu = 0
with rate 0, up to an exponentially decaying term. More precisely, for any u € 77,

there exists a polyhomogeneous solution uy € & such that for any [ € N:
Vo (u(t,2) = un(t, )0 = O (™)

when ¢ — oo, for any sufficiently small 6 > 0. Here we implicitly identify u over
Z1\K; with a section of E, over (0,00) x X. Therefore, we can define a linear
map K : J — &, such that for any u € J#;, the difference u — k;[u] and all its
derivatives have exponential decay at infinity. Taking care of the fact that we need
to change the sign of the variable ¢, we can similarly define a map kg : 5 — &
such that |u(z,t)—ralu](z, —t)|o = O(e™%) ast — oo for all u € #3, with the usual
identifications. For ¢ = 1,2, the kernel of the map &; in JZ; is ;. Considering
adjoint operators, we may also define J£;*, £, and linear maps «; : 7" — &™.
With these notations in hand, let u; € J#i, us € #5 and fix T > 0. We say

that u; and uy are matching at T if the following condition is satisfied:
Rilul)(t+ T+ 1,2) = kolug|(t = T — 1,2), V(t,z) € R x X. (3.10)

Given a matching pair of solutions (uy,us), we can define a section of the bundle
Er — My as follows:

ur = (1 = xr41(p1))ur + (1 = x711(p2))ue

where we consider x(p;)u; as a section of Er supported in the domain {p; <
T + 2} C Myp. In particular, ur = wu; in the domain {p; < T + %}, Ur = Us
in {p, < T + 3} and it smoothly interpolates between the two in {|pr| < 5}. It
is easy to see that Prup = 0 outside of the annulus {|pr| < 2}. The matching
condition (3.10) ensures that for any [ € N, small enough § > 0 and arbitrary
norms on #7, 45, there exists a constant C' > 0 independent of 7" > 1 such that:

1Pruzller < Ce™ ([Jull + [|uzll) (3.11)

for any matching pair of solutions (u1,us). In that sense, ur is an approximate
solution of Pru = 0. The substitute kernel %7 of Pr is defined as the finite-

dimensional subspace of C*°(Er) of approximate solutions constructed in this way,
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from a matching pair (uy,us) of solutions of Pu = 0. Similarly we define the
substitute cokernel JZ7 as the substitute kernel of Pj. These definitions depend
on the arbitrary choice of cutoff function y, but since the difference for two choices
of cutoff function would decay exponentially with 7" this will not be an issue.

For these notions of substitute kernel and cokernel to be convenient to handle
in practice, it is simpler to assume that for 7T large enough the dimensions of
Jp and 7 are independent of T'. This is automatically satisfied if the indicial
operator Py has only one root. Indeed, in this case we can express the matching
condition at T" as a finite-dimensional linear system depending polynomially on T’
by choosing convenient bases for im xq, im ko and &. The minors of this system
are polynomial in T, and therefore are either identically 0 or do not vanish for 7'
large enough. Hence the rank of the system does not depend on T for T large
enough, and neither does the dimension of its kernel. We can argue similarly for
the substitute cokernel JZ7.

For more general operators, the matching condition will be expressed as a
finite-dimensional linear system with coefficients depending analytically on T, and
although the non-trivial minors of the system only have isolated zeroes we cannot
always ensure that there are only finitely many of them. This is the situation that
we want to avoid. Therefore we will assume that P has only one real root to state
our main result, about the existence of a Fredholm inverse for P in the complement
of the substitute kernel and cokernel. This is sufficient for our applications in
Section 3.4. However the method we develop is more general, and for most of this
chapter we do not need to take any restricting assumptions on the roots of the
indicial operator.

Assuming that the spaces % and £ have constant dimension for 7' large
enough, it follows from (3.11) that for any Sobolev norm W*P and any small
enough § > 0, there exists a constant C' > 0 such that for T" large enough and for
any u € 7 we have:

1Prullwrs < Ce™*Tlul| o,

Similar bounds hold for P;. Hence there is no hope to have a control on the norm
of the inverse of Pr better than O(eT) if we do not work on the complement of

Hp and .

3.1.3 Results and strategy. Our first main result is the following theorem,
which says that under the limiting assumption described above we can find a
Fredholm inverse for Pr in the complement of the substitute kernel and cokernel,

with norm bounded by a power of 7"
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Theorem 3.6. Let p > 1 and | € N, and assume that Py has only one real root.
Then there exist constants C,C" > 0 and an exponent 5 > 0 such that for T large
enough the following holds.

For any f € W' (Fy), there exist a unique u € W*P(Er) orthogonal to 7

and a unique w € K7 such that f = Pru+w. Moreover, u satisfies the bound:
[ullwrste < Ol fllwrr + C T f 1o

Remark 3.7. The case when the indicial operator Fy has no real roots has been
studied by Kovalev—Singer in [81], who show that under this assumption one can

build an approximate inverse for Pr with uniform bounds (independent of T').

In some cases, we are also able to determine the optimal exponent 3. This is for
instance the case of the Laplacian operator Ar of the metric gr. The Laplacian
acting on g-forms on R x X has no real roots when b7 *(X) + 07(X) = 0 and
admits 0 as unique real root when 97 1(X) + b9(X) > 0. If ¢ 1(X) + b9(X) = 0,
it follows from the results of [81] (see Remark 3.7) that the norm of the inverse of
Ar orthogonally to the space of harmonic ¢g-forms is bounded independently of T
When b7~ (X) + b7(X) > 0, we will see that 3 = 2 is optimal in Theorem 3.6 and
the substitute kernel gives a good approximation of the space of harmonic forms
(see Corollary 3.38).

If we consider the L2-range, this means that the behaviour of the low eigenval-
ues of Ar depends on the topology of the cross-section X. When b7 (X)+b%(X) =
0, the lowest non-zero eigenvalue of Ar acting on g-forms is uniformly bounded
below as T — oo. On the other hand, if »%*(X) + b%(X) > 0 then the first
eigenvalue satisfies a bound of the type A (T") > % for some constant C' > 0. It
is an interesting problem to determine the distribution the eigenvalues that have

the fastest decay rate. Let us define the densities of low eigenvalues as:

Agint(s) = li%n inf # {eigenvalues of Ar acting on ¢-forms in (O, 7r2$T_2]}
—00

Ay sup(s) = limsup # {eigenvalues of Ar acting on g-forms in (0, WQST’Z}}

T—oo

where we count eigenvalues with multiplicity. The normalisation by 72 comes
from the fact that we expect the lowest eigenvalues to be decaying at precisely this
rate, whilst the factor 72 is just a matter of convenience. We can similarly define
the densities A7 (s) and A7 (s) of low eigenvalues of the Laplacian acting on
co-exact g-forms. We are interested in understanding the asymptotic behaviour of

these densities as s — 0o0. In §3.4.2 we prove the following:
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Figure 3.3: Asymptotic behaviour of the spectrum.

Theorem 3.8. If b9 1(X) + b4(X) > 0, then the densities of low eigenvalues
satisfy:

Agsup(s) = Agine(s) + O(1) = 26"~ (X) + b(X))v/s + O(1)
as s — oo. If moreover b7(X) > 0 then:

Agsup(8) = Ajine(s) + O(1) = 2b°(X)/s + O(1).

This theorem essentially says that the lowest eigenvalues of A are asymptot-
ically distributed as the low eigenvalues of the Laplacian acting on the product
Sir x X, where the first factor is a circle of length 27" (see Figure 3.3 above). We
can only express our result as an asymptotic statement on the distribution of the
eigenvalues and cannot obtain a more precise asymptotic development (unlike in
the simpler setting of [46]). This is because the interaction between the building
blocks of the construction creates a shift in the spectrum of Ay compared with
the spectrum of the Laplacian on the product in a way which we cannot explicitly

describe, because we do not have exactly cylindrical ends.

Remark 3.9. In the case of the twisted connected sum of Gy-manifolds, the cross-
section is T? x K3 (or a quotient thereof). Using the C*-estimates of the previous
chapter, Theorem 3.8 can be applied. Hence we find an infinite number of eigen-
values decaying at the same rate. This is consistent with the predictions of the
swampland distance conjecture, where they correspond to the infinite towers of

asymptotically light states. I have been told by physicists that this asymptotic
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density of eigenvalues is related to the concept of dualities, that is, in this limit
the correct low-energy physics is described by a different theory compactified on

the cross-section X instead of M.

Let us finish this section with an overview of our strategy. We prove Theorem
3.6 by an explicit construction method, similar to the constructions by Kapouleas
of minimal surfaces in Euclidean space [69, 70], by which we were inspired. The
idea is to use cutoffs to separate the analysis in three different domains: the neck
region, which is close to a finite cylinder [T, T| x X, and two regions isometric to
the domains {p; < T + 1} C Z;. One challenge is that when the indicial operator
Py acting on the cylinder has real roots, it is not invertible nor even Fredholm in
the Sobolev range that we would like to consider. However, this failure is due to
the asymptotic behaviour of solutions, and we only need to work on a compact
region of the cylinder. To deal with this issue, let us denote by WP the subspace of
WP constituted by sections with compact essential support. The main analytical

ingredient of our construction is the following theorem, proved in Section 3.2:

Theorem 3.10. Let Py : C*°(E,) — C>®(F,) be an elliptic translation-invariant
operator of order k acting on the cylinder R x X. Let d be the maximal order of
a real root of Fy.

For any p > 1, there exists a map Qq : LP(Ey) — WEP(E,) such that for any
f € LP(F,) with compact essential support, PoQof = f. Moreover, there ezists a
constant C' > 0 such that for any T > 1 and any f € L2(F) with essential support
contained in (=T,T) x X :

||QOf||Wk»P((_T,T)><X) < OTd||f||LP~

Remark 3.11. The existence of the map )y can be deduced from standard results
as [89] or [93] for instance. However, the explicit expression that we give for Q)
will be important for our purpose, since a precise understanding of the asymptotic

behaviour of QQyf will play a key role in the construction of Section 3.3.

Using this theorem, we can try to build approximate solutions of the equation
Pru = f by first taking a cutoff fy of f in the neck region, and considering an
equation of the type Pyug = fo. We can consider fy as a section of F;, supported
in [-T,T] x X. This equation can be solved using the above theorem. Taking a
cutoff ug of the solution, the equation Pru = f can be replaced with an equation
of the form Pr(u — ug) = f’, where f’ is appropriately small in the neck region.
Thus f’ can be written as a sum f; + fo, where each f; is a section of F; defined

in the domain {p; < T + 1} C Z; and satisfies good decay properties. This allows
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us to use weighted analysis to study the equations P;u; = f; in a range where the
operators P; satisfy the Fredholm property. Similar ideas can be found for instance
in [99].

Unfortunately, there are obstructions to solving Pu; = f; in weighted spaces,
and the main difficulty is to understand how these obstructions interact. Using a
pairing defined in §3.2.2, we can keep track of the obstructions and express their
vanishing (up to an exponentially decaying error term) as a finite-dimensional lin-
ear system, which we call the characteristic system of our gluing problem. The
unknown of this system is an element v € & which represents our degrees of free-
dom in solving the equation Pyu = fy. The coefficients of the system are linearly
determined by f. In §3.3.3, we prove that in full generality the characteristic sys-
tem admits a solution if and only if f is orthogonal to the substitute cokernel.
With the extra assumption that P has only one root, this allows us to build an
approximate solution of the equation Pru = f, and when 7' is large enough we can
prove Theorem 3.6 using an iterative process. However, our method could apply
more generally, as long as one can ensure that the characteristic system admits a

solution with reasonable bounds.

3.2 Translation-invariant differential operators

Throughout this section, we fix a compact oriented manifold X and let Y = Rx X.
If ¥ — X is a vector bundle, we denote by £ — Y the pull-back of F by the
projection Y — X on the second factor. Given any connection V on E, we can
endow E with the pull-back connection V. Parallel transport along the vector field
8% naturally defines a translation operator on E. A section of E is translation-
invariant if and only if it is the pull-back of a section of £. We also equip Y with a
cylindrical metric gy = dt? + gx and endow E with a translation-invariant metric.
Sobolev and C* norms on Y are defined with respect to this data.

In §3.2.1, we introduce some background about analysis on cylinders. In §3.2.2
we study the action of a general elliptic translation-invariant operator P on poly-
homogeneous sections and define a pairing between the spaces of polyhomogeneous
solutions of Pu = 0 and of P*v = 0. Last, we prove Theorem 3.10 in §3.2.3 by
constructing explicit solutions of the equation Pu = f. Using the above pairing,
we can precisely analyse the asymptotic behaviour of these solutions, which will

play a key role in Section 3.3.
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3.2.1 Analysis on cylinders by separation of variables. On the cylinder
Y = R x X, we have natural isomorphisms identifying LP(E) with LP(R, LP(FE))
for any p > 1, which follow from Fubini’s theorem. Therefore we can think of
sections of translation-invariant vector bundles over Y as maps from R to an
appropriate Banach space of sections over X. Moreover, for p > 2 there is a
continuous embedding L?(F) < L*(FE), which therefore induces a continuous
embedding LP(E) — LP(R,L*(E)). Hence there exists a constant C' > 0 such
that for any u € LP(E):

1
lullm.zomy = ([ luallfadt)” < Cllulls

where u; = ul (13xx- The main tools that we will need for the analysis of PDEs on
a cylinder R x X are the Fourier transform and the convolution along the variable
t € R. Below we recall some definitions.

Let H be a complex Hilbert space, and consider functions f : R — H. Later,
we will take H to be the space L*(E). We denote by . (R, H) the space of H-
valued Schwartz functions, that is, the space of smooth functions taking values in
H that have all derivatives rapidly decaying at infinity. If f € (R, H), we can
define its Fourier transform f :R — H by:

fo = /R e~ F(1)dt (3.12)

for any A € R. As in the case of scalar-valued functions, f also belongs to the
space . (R, H). This defines an invertible map (R, H) — (R, H), and the
inverse Fourier transform takes the usual expression. As H is a Hilbert space, the
Plancherel theorem holds and the Fourier transform extends to a bounded linear
map L*(R, H) — L*(R, H), which is, up to constant, an isometry [1, Th. 2.47].

Just as for scalar-valued maps, the Plancherel theorem also implies that the
Fourier transform can be extended to the dual space ./'(R, H) of . (R, H). In
particular, for any p > 1 we can define the Fourier transform of an LP-function
through the embedding LP(R, H) — /(R, H). On .%’(R, H) we can also define
weak derivatives by duality, and moreover the relation f/(A\) = iAf()\) can also be
proved by evaluating against test functions.

Let us consider two complex Hilbert spaces Hy, Hy and let B(Hy, Hy) be the
Banach space of bounded linear operators from H; to Hy. Let R: R — B(Hy, Hs)
be a smooth map, such that R and all its derivatives have at most polynomial
growth. Then R induces a linear operator Ag : (R, H;) — .7 (R, H3) acting on
a Schwartz function f by:

AplfI(8) = [P RO, vieR (3.13)

2
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The Plancherel theorem implies that if R is bounded, then Ag extends to a
bounded linear operator L*(R, H;) — L*(R, H). The Hilbert-space-valued Mikhlin
multiplier theorem gives a sufficient condition for Ag to extend as a bounded linear
map for other LP-spaces (see [1, Th. 5.8] or [12, Th. 6.1.6]):

Theorem 3.12. Assume that there exists a constant C' such that || R(N)||+[|[AR'(N)]|
C for all X € R, where || - || denotes the norm of B(Hy, Hy). Then Ag extends as
a bounded linear map LP(R, Hy) — LP(R, Hy) for all 1 < p < oo.

In §3.2.3, we will also need to consider functions F' : R — H defined by integrals

of the form

Ft) = /t ) <t(z_—?)_! f(r)dr

where [ > 1 and f € L!(R, H) is a compactly supported integrable function. The
function F' is continuous, and since the support of f is compact F' has at most
polynomial growth at infinity, and therefore it defines an element of .%/(R, H). If
we denote the Heaviside step function by H and define H,(t) = %H (t), then
I can be written more compactly as the convolution H; x f. Note that the n-th
order weak derivative of H; is H;_, if n < [ and the Dirac mass 0 if [ = n. The

weak derivatives of F' € ./(R, H) are naturally given by:

Hi_,*f ifl<n,
F = if | =n, (3.14)
foD il >,

This can be proved by integrating against a test function g € (R, H), as in the
case of scalar-valued functions.

Let us now turn to the study of PDEs on cylinders. Let £ and F be translation-
invariant vector bundles over Y = R x X, equipped with translation-invariant
metrics and connections. We will denote by y = (¢,x) the points in Y. Moreover
let 0; be the covariant derivative along 8%, and define D; = —i0,.

A differential operator P : C*(E) — C*°(F) of order k is translation-invariant
if it takes the form: i

P(2,0,,D;) =Y Ap_i(z,0,)D,
1=0
where Ay_,(z,0,) are differential operators C*(E) — C*(F). If P has order k,
it is a standard fact that it induces continuous maps P : WktbP(E) — WHP(F) on
Sobolev spaces of sections.

From now on we assume that P is elliptic, and for any 7" > 0 we denote by

Ep the restriction of E to the finite cylinder (—=7,7T) x X. If u € LP(E,) and
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Pu € W'(E,), then by elliptic regularity the restriction of u to (—=1,1) x X is in

Wk+bp(E,), and moreover we have interior estimates:

lullwiriogzy < C (IPullwise,) + lullrs,)) -

Combined with the translation-invariance of P, we get interior estimates for sec-

tions of £ that are independent of 7"

Proposition 3.13. Let P : C*°(E) — C*(F) be a translation-invariant elliptic
operator of order k, and let p > 1 and |l € N. Then there exists C' > 0 such that for
any T > 1 the following holds. If f € W' (Fr.,) and u € LP(Er.,4) is a solution
of Pu= f, then ul 7 1), x € WHrHP(E) with the bound:

lullwerine,y < C (I lwerey,,) + lullew,.,,)) -

When p > 2, we can make a stronger statement. If v € L*(E,) and Pu €
W (E,), then the restriction of u to (—1,1) x X is in W**'?(E,) and moreover

we have an estimate:

lullwrstnz,y < C (IPullwisgey) + lull 2, ) -

Since LP((—2,2), L*(E)) continuously embeds into L?((—2,2), L*(E)) ~ L*(E,),
there exists a constant ¢’ > 0 such that if u € LP((—2,2), L*(E)) then we have

the following interior estimate:

lullwerinz, < O (1Pullwios,) + lullir-22).c22) -
Using translation-invariance this implies:

Proposition 3.14. Let P : C*(E) — C*(F) be a translation-invariant elliptic
operator of order k, and let p > 2 and | € N. Then there exists C' > 0 such that
for any T > 1 the following holds. If f € W' (Fr.,) and v € LP((=T — 1,T +
1), L*(E)) is a solution of Pu = f, then ul_rryxx € WHhHLP(E.) with the bound::

lellwrsioz,y < C (1 lwerey, ) + lellr-r-1rm),2) -
In the remainder of this part, we will be concerned with equations of the type
P(x,0y, Dy)u(t,x) = f(t, ) (3.15)

where P is a translation-invariant elliptic operator. It is usually studied by taking

its Fourier transform in the variable ¢, which takes the form
P(z,0p, Ni(z, \) = f(x,\). (3.16)

62



For any fixed A € C, the operator P(z,0,,A) : C®(E) — C*®(F) is an elliptic
operator of order k, and hence defines Fredholm maps W*tP(E) — WHP(F) for
p > 1and [ > 0. By the results of [3] these maps are analytic in the variable A,

and there exists a discrete set p C C such that the homogeneous equation
P(z,0,, N)u(z,\) =0 (3.17)

has a non-trivial solution if and only if A € €p. Moreover, the intersection of p
with any strip {§; < im A < 5} of C is finite. The elements of €p are called the
roots of P. The discrete set Zp = {im A\, A € €p} is called the set of indicial roots.

Example 3.15. Consider the translation-invariant bundle A¢T*Y" of complex-valued

differential forms. It splits as a direct sum:
AcT*Y = AcT* X & dt N AcT* X

where AcT*X is the pull-back of the bundle of differential forms on X. The

operators dy and dj- take the form:

dy(a + dt A 5) = an -+ dt A (6t04 - dxﬁ)
di (o + dt A B) = diva — 9,8 — dt A diy B

Thus if we define J € End(AcT*Y) by Jn = dt An — Lo, where ¢ denotes the

interior product, we can write the Fourier transform of the operator dy + d3- as
(dy +dy)(AN)n = (dx + dy)a —dt A (dx + dy)B + iXIn.

with n = a + dt A B. The Laplacian Ay = dydj + djdy can be written as
Ay = —0? + Ax, so that its Fourier transform is Ax + A\?. For both operators,
the roots are exactly the values 4i\/\,, where )\, > 0 are the eigenvalues of the
Laplacian Ax. In particular the only real root is A\g = 0, and the corresponding
translation-invariant solutions are of the form « + dt A 3, where a and [ are

harmonic forms on X.

For A € C, we will write P(\) as a short-hand for P(z,0,,A). It can be seen
as a Fredholm map W**P(E) — WHP(F), analytic in the variable A. This implies
that P(\) is invertible for A\ ¢ €p [3, 4]. Its inverse R(A) is called the resolvent of
P(\); for any m < k +1 it can be considered as a bounded operator form Wh?(F)
to W™P(E) (which is compact when m < k+1). We will denote by ||R(\)||;m the
operator norm of the resolvent seen as a map W' (F) — W™P(FE). By the results
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of [3] the resolvent is meromorphic in A € C, with poles exactly at the roots of P.

That is, around any \g € p we can write:

R_4q(Xo) . R-1(Xo) + i Ry(Ao) (A — Xo)"

R =5t T P

where R;()\) are bounded operators WHP(F) — W™P(E) and the series has posi-
tive radius of convergence. The largest positive integer d such that R_;(\g) # 0 is
called the order of A\g. The notions of root, pole and order do not depend on the

Sobolev spaces we choose to work with.

The following bounds on the resolvent R(A) and its derivative R'(\) = 2%())

are crucial for our purpose, and follow from the more general [3, Theorem 5.4]:

Theorem 3.16. Let p > 1, [ € N and P be a translation-invariant elliptic opera-
tor. Then the following holds:

(i) The resolvent R(\) has no poles in a double sector {arg(£X) <4, |\ > N}

and in this domain there exists a constant C > 0 such that:

<
Li+i —

k
[ R
=0
(i) Furthermore, as |\| — oo along the real azis:
k B 1
]z:%) H)‘k jR/(A)Hl,H-j =0 ()\) '

The last result that we want to mention here is the following well-known propo-
sition (see [79] for an original reference), which can be seen as a particular case of

Theorem 3.10. When P has no roots along the real axis the following holds.

Proposition 3.17. Let p > 1, | € N, and assume that P has no real roots. Then
the map W*HP(E) — WHP(E) induced by P admits a bounded inverse.

A sketch proof of this proposition is as follows. If f is a smooth, compactly
supported section of F, then equation (3.16) admits a solution &(X) = R(A)f(A),
where we can consider f as a Schwartz function valued in L*(F) and the resolvent
R()\) as a bounded map L?(F) — L?(E). Hence we have a solution u = Q[f] €
S (R, L*(E)) of Pu= f defined as:

Qf)(t) = ;ﬂ / eMR(A)f(N)dA, Vi eR. (3.18)

It follows from Theorem 3.12 and the above bounds on the resolvent that () extends
to a bounded linear map LP(R,L*(F)) — LP(R,L*(E)) for any 1 < p < oo.
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If p > 2, the fact that P admits a bounded inverse in the LP-Sobolev range
can therefore be deduced from Proposition 3.14 and the continuous embedding
LP(E) — LP(R, L*(E)), and the case 1 < p < 2 can be treated by duality.

When P has real roots the statement of Proposition 3.17 no longer holds and
the map induced by P on Sobolev spaces is not even Fredholm. It still has finite-
dimensional kernel but the cokernel has infinite dimension. In order to understand
the mapping properties of P in more detail, we want to make sense of the inverse

Fourier transform of the singular part of the resolvent.

3.2.2 Polyhomogeneous sections. In this part, we prove that the action of P
on polyhomogeneous sections admits a right inverse and introduce a pairing which
will play an important role in Section 3.3. A section of E — Y is called exponential
if it is of the form w(z,t) = e?p(x,t), where A € C is called the rate of u and
p is polynomial in the variable t. A polyhomogeneous section is a finite sum of
exponential sections.

To understand the action of P on polyhomogeneous sections, we fix \g € C

and define:
Py, (2,0, D;) = e " P(x,0,, Dy)e™! (3.19)

which is a translation-invariant operator on Y. More explicitly,
10"P "
Pa(D) = Y 5 (o)D)

n>0
We consider Py, as an operator mapping the space W*?(E)[t] into LP(F)[t], that
is, we consider the action on sections of £ — Y that are polynomials in ¢ and have
WHP coefficients. Our goal is to show that Py, admits a right inverse Q,,.
Consider the resolvent R(\) as an operator LP(F) — W*P(E). If \q is a root
of P, it is a pole of R and we denote by d(})g) its degree. By convention we set
d(Xo) = 0 if Ao is not a root of P. In general we may expand R(\) near )\ as:

R_gn(ho) | Roi(Xo)

R()\) = ()\ _ )\O)d()\o) )\ _ )\0

+ Ro(ho) + 3 Run(Mo)(A = Xo)™

m>1

where for m > —d(\o), Rn(Xo) : LP(X, F) — WFP(X, E) are bounded operators.
The relations R(\)P()\) = Idyks(py and P(A)R(A) = Idzs(r) that hold away form
the roots of P imply:
1 o"P 1 0"P
Z ij()\O)W()\Q) == Idwk,p(E), Z . m a)\n ()\O)Rm()\O) - Ide(F) (320)

m~+n=0 n: m4n=

and for any non-zero [ € Z:
1 o"P 10"P
- ——(M)=0= % —Z— . 21
Rin(Xo) I (Ao) =0 o (Ao) Bin(Ao) (3.21)

|
m-+n=I[ n: m4n=I
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Example 3.18. One can easily see from Example 3.15 that \g = 0 is a root of
order 1 of the operator dy + dj-, and of order 2 for the operator Ay . The singular
parts of their resolvent can be computed with the above relations. For the operator
dy +di, relations (3.21) for I = —1 imply that B¢ (0) vanishes on the orthogonal
space to harmonic forms and maps into the space of harmonic forms. Relations
(3.20) imply that:
iR (0)Jn = n =iJRYT (0)n
for any translation-invariant harmonic form on Y. As J? = —1 we obtain:

RHT(0) = iJ o pp = ipno J

where pj, is the L?-orthogonal projection onto the space of harmonic forms. As the

Laplacian Ay is the square of the operator dy + d* this implies that:
R2,(0) = (RT(0))* = (id)*pi, = pn-

On the other hand, as the Fourier transform of Ay is an analytic function of the
variable \? it is easy to see that R, (0) = 0.

With these notations in hand, let D; * be the endomorphism of LP(F)[t] map-
ping (’;!)J v to ((’;J):S v for any v € LP(F'). This is a right inverse of D,. Let us define

the operator @, : LP(F)[t] — WkP(E)[t] by:

Qx(Di, D7) = > Ru(ho)Dy".
m>—d(Ao)
It maps polynomials of order m to polynomials of order at most m + d(\g). More-

over relations (3.20) and (3.21) imply the following:
Lemma 3.19. The map Qy, : LP(F)[t] — W*P(E)[t] is a right inverse of Py,.

Let us now turn our attention to the kernel of P,,. It is non-trivial if and
only if Ay is a root of P, which amounts to saying that the homogeneous equation
Py, u = 0 admits a non-trivial translation-invariant solution. Moreover, the kernel
of P, acting on polynomial sections in the variable ¢ is always finite-dimensional,
and the degree of its elements is bounded above by the order of the root Ag minus
one [3]. In particular, if Ay has order 1 the only polynomial solutions of Py,u = 0
are translation-invariant.

For any root A\g of P, let us denote by &, the (finite-dimensional) space of
exponential solutions of Pu = 0 of rate Ay, and 5’;0 the space of exponential
solutions of P*v = 0 of rate Ao (note that P(A\)* = P*(\) for any A € C). As we
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are mainly interested in the real roots of P, we denote by A, ..., \,, the real roots
and define:

E=Pé&, &=B&.
j=1 =1

We shall now define a pairing & x & — C and derive its basic properties.
Let x : R — R be a smooth function such that x = 0 in a neighbourhood of
—oo and xy = 1 in a neighbourhood of +o0o0. We define a sesquilinear pairing
(+,) : & x & — C by the integral:

(u,v) = /R (P(Dy) [x(t)u()], v(t)) dt. (3.22)

Here, we denote by (-, ) the L?-product on the compact manifold X. This is well-
defined as P(D;) [x(t)u(t))] is compactly supported for any v € &. Further, it does
not depend on the choice of function y. Indeed, if y is another smooth function
that satisfies the same assumptions, define x, = (1 — 7)x + 7x for 7 € [0,1]. As

%XTT (t)u(t) is compactly supported, we can integrate by parts to obtain:

L (PO o eyu(r)] o)) e = [

R

<P(Dt) laaX; (t)u(t)] ,v(t)> dt =0

as P*(Dr)v(t) = 0. Therefore the pairing does not depend on the choice of x.
An important consequence of this observation is that &), is orthogonal to &5

for the pairing (-,-) unless ¢ = j. Indeed, let u € &, and v € &Y, and replace x(t)

by x(t — 7) in the definition of the pairing, for 7 € R. Then we can compute by a

change of variables:

/ (P(Dy) [x(t = T)u(t)],v(t)) dt = T [(% v) + > alu, v)Tl]
R 1>1
where the coefficients a;(u, v) are independent of 7, and only finitely many of them
are non-zero. As this has to be equal to (u,v) for all 7 € R, this implies a; = 0 for
[ >1 and (u,v) =0 when i # j.
The key property of the pairing (-, ) is the following:

Lemma 3.20. The pairing (-,-) is non-degenerate.

Proof. By the above remarks it suffices to show that the restriction of (-,-) to
&, x 65, is non-degenerate. Consider first v € ker P*();), so that 9(t,z) =
eity(x) is an element of &y, Considering v as an element of L3(F)[t], we define
u(t,z) = Qx,v. This is a polynomial of order at most d(};) in the variable ¢, and
it satisfies:

Py.(Dy)u(t) = v.

J
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Differentiating this expression in the variable t, it follows that:

Py, (Dy)[Dyu(t)] = 0

J

so that a(t,z) = e”™'Dyu(t,x) is in &),. Let us now pick a function x as above

and compute:
/R<P<Dt) [X(t)ﬁ(t)] ,ei)\jtv> dt = /]R <P/\j (Dt) [X(t)Dtu(t)] ,U> dt
= [P (D) 0] vy di — & [ (P(D) [ (u(t)], o) d

]

which holds because P(D;)[x(t)u(t)] = v as t goes to +oo and P(Dy)[x(t)u(t)] =0
as t goes to —oo. Thus we have (@, 0) = —i||v||2, which is non-zero when v # 0.
In general, let v(t, ) be an element of &5 of degree m. Then eNtDme ity (¢, x)
is a non-zero element of éa/{*j of degree zero. By the above argument there exists
u(t,x) in &, such that (u,e™'D"e"M'v) # 0. Moreover one can easily check
that:
(1, €M DI e=iAity) = (Pt D=ty )

and e Dy"e~ity € &),. Hence the pairing (-, ) is non-degenerate. O

FEzxample 3.21. The space of translation-invariant solutions of the operator dy + d5-

acting on AcT™*Y is:
Epyar = Egpg- =1+ dt NS, o, f € CF(AcT*X), Axa=Axp =0}
Ifa+dtAB, o +dt NP € & we can compute their pairing:
(a+dtAB, o/ +dt NS = /((dy +dy)(x(T)a+dt A B), o’ +dt A B'Ydr

/X'(T)(dt ANa— B, +dt ABNdr
<avﬁ,> - <B7al>

which is clearly non-degenerate.

For the Laplacian Ay acting on g-forms, the spaces &; and & are both isomor-
phic to the space g-forms that can be written as ng + tn;, where 1, = «o; + dt A j3;
with a; € Q4(X) and §; € Q% '(X) harmonic. In the same way one can easily

derive:

(7]0 + “717776 + tni) = <a07a/1> + <507ﬁ1> - <C¥1,046> - <Bl:ﬁ6>
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3.2.3 Existence of solutions. In this part we prove Theorem 3.10, beginning by
the case p > 2. Let us consider a translation-invariant elliptic differential operator
P : C®(E) — C>(F) of order k with real roots Ay,...,A,. For 1 < j < m,
let d();) be the order of the root \;. Considering the resolvent as a family of

(compact) operators from L?(F) to L?(E), we have a decomposition of the form:

RN\ =R\ +> Y ——2& (3.23)

j=1 i=1 i)

where the regular part of the resolvent R,.()) is an analytic function from a neigh-
bourhood of the real line in C to B(L*(F), L*(E)). We will denote the second
term of the right-hand side of equation (3.23) by R,(\); this is the singular part
of the resolvent.

Since p > 2, asection f € LP(F) can be considered as an element of L?(R, L*(F)),

which has compact essential support. We want to find a solution of equation (3.15)

d(Xj) R—l()\j)
A— N\

through the study of the Fourier transformed equation (3.16). As the resolvent
has poles we need to make sense of the expression @(\) = R(\)f(\), or rather of
its inverse Fourier transform.

Differentiating the identity P(X)R(X) = Id 2y and using the bounds of Theo-
rem 3.16, we see that the resolvent and all its derivatives have at most polynomial
growth at infinity. Since this also true of the singular part of the resolvent, which
is bounded at infinity as well as all of its derivatives, then the same holds for the

regular part of the resolvent. On the other hand, from Theorem 3.16 we have a

bound: ,
IR+ AR =0 (5)
as |A\| — oo. Further this bound clearly also holds for the singular part of the

resolvent. Therefore there exists a constant C > 0 such that for all A € R we have:
RN + AR,V < C

Thus Theorem 3.12 implies that R,()\) induces a bounded map Q, : LP(R, L*(F)) —

LP(R, L*(E)) defined as:

Ol(t) = - / MR (BN, Yo € LP(R, L2(E)). (3.24)

:27T

Define u, = Q,[f] € LP(R, L*(E)). By definition we have @,(\) = R,(\)f()\) for
X € R. As f has compact support, its Fourier transform f (A) can be continued as
an analytic L?(F)-valued function of the variable A € C. Moreover, R,(\) has no

poles in a complex strip of the form {|im | < ¢} for some 6 > 0, and therefore
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@,(\) can be extended as an analytic L?*(FE)-valued function for A varying in a
neighbourhood of the real line in C.

We now deal with the singular part of the resolvent. Our main problem is
that we cannot directly make sense of the inverse Fourier transform of Ry(\)f(\).

Nevertheless, it is natural to define the following:

d(Xj)

wlt) = QAW = 3

j=1 1=1

iteAit /too (t(l__?)_!e_i’\jTR_l()\j)f(T)dT. (3.25)

Note that the integrals are well-defined because f has compact essential support,
and therefore u, is a map R — L2(E). If we define H,\(t) = e™titl_F(¢)

i-1)!
where H is the Heaviside step function, then we can write uy; more compactly as

a convolution:
d(Aj)

f: Hpy, * (Roy(0) f). (3.26)

j=1 i=1
In general u; is not in LP(R, L?(E)), but its restriction to any finite interval (=7, T)
is LP. We will shortly provide more precise estimates, but we first want to prove
that v = u, + u, satisfies Pu = f.
In order to do this, let us first compute P(D;)u,(t), considering D, as a weak

derivative wherever appropriate. Taking the Fourier transform, we may compute

P(Nu,(A) for A € R\{\q, ..., A\, } as follows. As P(A)R(X) = Id z2(p), we have:
PN, (A) = f(3) = PRV ().
For each root \;, we can expand P()) in Taylor series around A; to compute:

d()‘J d(Xj) )\ . )n lan

; Z n! ON"

(A R-1(A))-

=1
By relations (3.21), the expansion of the sum in powers of A — \; is polynomial,
that is the sum of the terms containing negative powers of A — A; vanishes. This

yields:

which holds for A # A;. As both sides of the equality are analytic in the variable
A, this is in fact true for all A contained in a neighbourhood of the real line in C.

We can therefore take the inverse Fourier transform to obtain:

PO = f(-3 3 Mt [ LTL 0RO (327
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Next, we compute P(D;)us. Let us remark that for n < [ we have the following
identity:
€i)\tD;L6_MtHl’>\ = (Dt — )\)nHl,)\ = Hl—n,)\ (328)

and for n = [, we have:
eMDle™ M\ = (3.29)

where 4 here is a Dirac mass centred at t = 0. Writing P(D;) = e'P, (D,)e” "
where Py, (D;) is the operator defined in §3.2.2, we have

d(Xj) 1 0"P
P Z Hl)\ *< Z Z ez)\ tDn —iA; tH [n' 8)\774 <)\j>Rl()\j)f‘| .

=1 n>0 [=1

If we split the sum into two parts, we see using (3.14) and (3.29) that the sum of

the terms for which n > [ is equal to:

d(>‘j) o\ ; 1 anP o\
3 ot LI 0RO 0. (330
n>l =1 :

On the other hand, the sum of the terms for which n < [ can be computed using
(3.14) and (3.28), and in fact this sum vanishes by (3.21):

d(>‘j) 1 anP
3 i, ¢ | e ORI =0 (3.31)
n<l =1 :

Comparing with (3.27), this proves that Pu = f. Once we prove that ug is in
LP(I, L*(E)) for any finite interval I C R, it will follow from Proposition 3.14 that
u is WP, Thus we have a well-defined map Q = Q, + Q, : LE(F) — W}P(E)
which is a right inverse for P.

It remains to prove the estimates of Theorem 3.10. Let T'> 1 and f € LP(F)
with essential support contained in (=7,7) x X. For =T —1 <t < T+ 1, we can

write:
m d(Aj)
= eNTR (N f(t — T)dT
D=5 [T ey
m dN;) oyl sl
-y >/ T TR ()T~ 7)dr
j=1 1=1 70 (=1t

In particular the L?-norm of wu,(t) is bounded by:

-1

Jeas (8) 2 iz/ml TR = s
C/Jroo X(0.27+1)( (i

e j=1 I=1

d(Xz) —1

IN

) 1t =7)ll2r)
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where C'is a constant depending only on the maps R_;()\;) and X021 is the char-
acteristic function of the interval (0, 27°+1). The function x(o27+1)(7) (Z;ﬂ:l 2731” (lTl—711)|)
is L', and since d is the maximum of the d(};) it has L'-norm bounded by CT*¢

for some constant C' > 0 that does not depend on T" > 1. Thus, as a function of

the variable t € (=7 — 1,7 +1), the function ||u,()|| 12(x) is bounded above by the

convolution of the L'-function X(072T+1)(T) (Z;-”:l 273{ ) %) and the LP-function

| f(7)]|z2, and therefore Young’s inequality yields:

lusllzo(r—1.r1).228) < CTY fll oo 22(8))-

Consequently, the restriction of u = us+u, to (=T —1,T+1) x X is in L((-T —
1,T+1),L*(E)) for any T > 1. By Proposition 3.14, ul _rryxx € WHkP(E ;) and:

lullwer@z,y < CUNoE,, ) + luller-r-1741),22(2))
< C([flleee) + llurllze@ 2my) + [l zo-r-1,741),2(m)))
< CIf ey + 1o z2cry) + CTU f | o, L2ry)
< CTU Loy

which holds since the LP(E)-norm of f controls its LP(R, L?(F))-norm. Moreover,
we can apply the same argument for any arbitrarily large 77 > T to deduce that
u € WEP(E). This finishes the proof of Theorem 3.10 in the case where p > 2.
The case 1 < p < 2 can be treated by duality, since the formal adjoint P* is also a
translation-invariant elliptic operator, and the maximal order of the real roots of
P~ is also d.

In the remainder of this part, we shall comment on the asymptotic behaviour
of the solutions constructed above. Let f € LP(F') and let u, us and u, be defined
as above. Assume that the essential support of f is contained in (=7,7) x X.

Then, outside of this compact set we have:
Pu, =0 = Pu,.

As Pu = 0 in this domain it suffices to show that Pugs = 0. This is a consequence
of (3.30) which yields:

d()\j) it l 1 anP i\t
Pug=%_ % ™Dy~ 1w (A)R_(Nj)e ™V f(t)]

n>l =1

For |[t| > T the expression under brackets vanishes identically, which proves our
claim.
An important consequence of this fact is that w, has exponential decay as

t| — oo, in the sense that the W*P-norm of e’fu, is finite for some § > 0, where
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p denotes an arbitrary smooth function on Y equal to || when |¢{| > 1. This
can be seen as a particular case of Lockhart-McOwen theory (see §3.3.1). On
the other hand, it is easy to see from its definition that u, vanishes identically in
the domain {t < —T'}, and more interestingly, u, is equal to the restriction of a
polyhomogeneous solution of Pu = 0 in the domain {t > T'}. Indeed for t > T
(3.25) reads:

m d(/\j) ) T . -1 X
%@>=§222“””1T%wj$!5“”R4u»ﬂﬂdr

which is manifestly polyhomogeneous. Let us denote the right-hand-side uy € &.
We may use the pairing (-, -) introduced in §3.2.2 to characterise u; by duality:

Lemma 3.22. With the above notations, (us,v) = (f,v) for any v € &*.

Proof. Let x be a smooth function such that y = 1 in (—o0,0] and xy = 0 in [1, c0),
and let x,(t) = x(t — 7). For any 7 > T" we have the equality (x,Pu,v) = (f,v).
On the other hand, let us prove that (Py,u,v) = 0 for any 7 € R. If 7,7 € R,

X — X+ has compact support and hence:
(Pxru,v) — (PXru,v) = (P(Xr — Xo)u,v) = ((Xr — X7)u, P*0) =0

Therefore the value of (Py,u,v) = 0 does not depend on 7. Hence we may send 7
to —oo, and as u(t) has exponential decay as t — —oo we obtain (Py,u,v) = 0.

It follows that (f,v) = —lim, ([P, x+]u,v). Given the exponential decay of
u,-(t) and its k first derivatives as t — oo, this yields:

(f,v) = — lUm ([P, xs|us,v) = lim ([P, 1 — x;|us,v) = (uy,v)

T—00 T—00

as claimed. O

Example 3.23. Consider the case of the Laplacian Ay acting on ¢-forms. The
singular part of the resolvent is A\~2py, where p;, is the projection on the space
of harmonic forms. Thus if 7 is a g-form on Y supported in [-7,7T] x X and we
denote by &(7) the L%-projection of 7, onto the space of harmonic forms, and write
&(T) = ar) + dt A B(T), we have by definition:

wlt) =@ [ (=)= |

-T

T

To(T) +dt NTS(T)dT —t /_1; a(T) +dt A B(T)drT.

For any v(t) = ap+dt A Bo+t(ar1 +dtA\py) € &, we can use the formula of Example
3.21 to check:

() = [ 7({alr), a2) + (5(r), 1)) + falr), a0) + (B(r), Guddr = {,v).
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3.3 The matching problem

In this section we explain the main construction of this chapter. In §3.3.1 we
review the mapping properties of adapted operators on EAC manifolds. In §3.3.2
we explain our method for constructing approximate solutions of the equation
Pru = f and show that it can be reduced to a finite-dimensional linear system. In
§3.3.3 we prove that this system admits a solution if and only if f is orthogonal
to the substitute cokernel defined in §3.1.2. Under the restricting assumption that
the indicial operator of the gluing problem has only one real root, this enables us
to prove Theorem 3.6. We also discuss other possible conditions which would yield

the same result.

3.3.1 Analysis on EAC manifolds. The mapping properties of adapted oper-
ators on EAC manifolds have been studied by Lockhart-McOwen in [89], and we
will give a brief review of their theory. The right function spaces to consider in this
situation are weighted Sobolev spaces. Let (Z,g) be an EAC manifold asymptotic
to a cylinder Y = R x X at infinity, (¥, h, V) an adapted bundle, and pick a cylin-
drical coordinate function p : Z — R.g. If u is a smooth compactly supported
section of E, we can define its W'P-norm (p > 1,1 € N, v € R) as follows:

I
lullyzr =D Ml V7 ul .
j=0
Note that for v = 0 this is just the usual W*? norm. The weighted Sobolev space
WLP(E) can be defined as the completion of C>°(FE) with respect to the WiP-
norm. We also denote by C'°(E) the space of smooth sections of E that have all
derivatives bounded by O(e™"?).

Let P be an adapted elliptic differential operator P : C*°(E) — C*°(F) of order
k,and let Py : C*(E,) — C*°(F,) be its indicial operator. The maps W P(E) —
WLP(F) induced by P are bounded linear operators. Moreover, combining the
estimates of Proposition 3.13 with standard interior elliptic estimates, we obtain

a priori estimates of the form:
lullyaso < C (1Pullyr + llullzz)

Contrary to the compact case, these estimates are not enough to ensure that the
maps induced by P on weighted spaces are Fredholm, essentially because of the
failure of compactness in the Sobolev embedding theorem between spaces with the
same weight. Nevertheless, Lockhart-McOwen showed that the Fredholm property
holds if and only if v is not an indicial root of Fy. When v ¢ Zp, we denote by
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ind, (P) the index of the maps induced by P on spaces of weight v. The following
theorem summarises the mapping properties of P in weighted spaces and the index

change formula as proved in [89].
Theorem 3.24. Let p > 1 and [ € N. Then the following holds.

(i) The maps WEHP(E) — WLP(F) induced by P are Fredholm if and only if
v & Dp,. In that case, the image of P is the L*-orthogonal complement of
ker P* N C*,(F).

(ii) If v < V' are not indicial roots of P, then the index change is given by

ind,(P) —ind,,(P) = )  dimé.
v<im A<v’

By elliptic regularity, the solutions of the homogeneous equation Pu = 0 are
smooth. An important property of solutions with sub-exponential growth is that
they have a polyhomogeneous expansion at infinity. More precisely, if 0 < v/ —v <
wand v,V ¢ Pp, then the following holds. For any u € CS° such that Pu = 0,
there exists v’ € C%° such that when p — oo, the difference u — ' is an element
of B, cimarcr &) under the usual identification of the domain {p > 1} with the
cylinder (1,00) x X.

From now on, let us assume that 0 is an indicial root of Py, and let:

o = min{y, Veg}l)(l)r\l{o} lv|} (3.32)
Take any 0 € (0,0). Recall that we defined %" as the kernel of P acting on sections
with sub-exponential growth, and J#; the kernel of P acting on decaying sections.
In particular, J# is the kernel of P acting on Wl_cg’(E) and #; the kernel of the
action of P on WyP(E). In §3.1.2 we defined a map  : # — & such that any
element v € % is asymptotic to x(v). Hence % is the kernel of k. Similarly
we defined 2", " and k* : " — &*. Let us point out that the index change

formula in Theorem 3.24 implies:
dimim k + dimim x* = dim &’ (3.33)

We want to study equations of the type Pu = f when f has exponential decay,
say f € LE. By Theorem 3.24, the obstructions to solve this equation for u € Wf P
lie in JZ*, whereas the obstructions to solve it in Wf’f lie in .%,". Here, we want to
use the pairing defined in §3.2.2 to give a precise description of these obstructions

and of the asymptotic behaviour of solutions in W*?.
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Let v € J* be asymptotic to £*(v) = vy € & and consider u € C*(E)
asymptotic to ug € &, such that u — ug and all their derivatives are exponentially
decaying as p — oo. The L? product (Pu,v) is well-defined as Pu decays expo-
nentially. It turns out that its value only depends on the asymptotic data. More

precisely we claim that:
Lemma 3.25. With the above notations, (Pu,v) = (ug, vg).

Proof. Let x : R — R be a smooth function such that y = 0 in (—o0,0] and y =1
in [1,00), and let x,(t) = x(t — 7) for 7 € R. Then for any 7 > 1 we have:

(P(1 = x-(p))u, v)
(1 =Xx-(p)u, P*v)

(Pu,v) = (Px-(p)u,v) +
+

since P*v = 0. Thus (Pu,v) = lim, oo (Px-(p)u,v). As u — ug, v — vy and the

coefficients of P — P, decay exponentially as p — 0o, as well as all derivatives, this

implies:
<PU, U) - TlLIEO<POXTUOa UO> = (u()aUO)
since (Pyx-ug,vo) = (ug, vo) for any 7 € R. O

As a consequence of this lemma, im £ and im x* are orthogonal for the pairing
(+,+). Together with equality (3.33), this implies that im « is exactly the orthogonal
space of im k* for the pairing (-, -).

Let us denote by #;* the subspace of %" orthogonal to J#;* for the L*-product,
so that x* induces an isomorphism between J#* and imx*. We also choose an
arbitrary complement &% of imx in &. Let m = dimim x*. Pick smooth sections
hi,...,h, which are asymptotic to a basis of &% at infinity, with the difference
and all their derivatives exponentially decaying, and denote by &/ C C*(FE) the
vector space they span. By Lemma 3.25 we may choose a basis g1, ..., g, of
such that (Ph;, g;) = 0;; for all 1 <4,5 < m.

Let f € L% be a section of F, and w be the L?-projection of f onto J#;*. Let

us write:

F= 1S g Phy +w.

j=1
where f' € L§ is by construction orthogonal to the obstruction space J£*. As
(o)l < Cllfllellgllze, for any g € 27, where g is the conjugate exponent of p
and C' > 0 is some constant, we have || f'[| .z < C’|| f||» for some universal constant
C’" > 0. By Theorem 3.24 there exists «’ such that Pu’' = f’ and ||u’HW§,p <
C"||f'||zz. This proves the following:
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Proposition 3.26. For any p > 1 and 0 < § < o, there exists a constant C' > 0,
depending only on p and 6, such that the following holds. Let f € LE(F), and let
w by its L*-projection onto #,. Then there exists a section u' € W(;k’p(E) with
HwHW;,p < C|fllwp and such that

P (u’ + z;<f, 9j>hj) =f-w
j=
3.3.2 Characteristic system. In the same setup as Section 3.1, we now consider
the gluing problem of two adapted operators P, P, of order kK on EAC manifolds
Zy, Zy. For the present discussion there are no restrictions on the real roots
of the indicial operator Fy. By definition, there is a compact K; C Z; and an
orientation-preserving diffeomorphism ¢, : (0,00) x X — Z;\ K3, and we picked a
positive cylindrical coordinate function p; on Z; such that py(¢1(¢,x)) = t when
t > 1 and p; < 1 everywhere else in Z;. As in Section 3.1 we fix a cutoff function
2,00). For 7 € R
we keep our usual notation x.(t) = x(t — 7). It will be convenient to introduce a

X : R — [0,1] such that y = 0 in (—oo,—3] and x = 1 in |

family ¢! : Z; — [0,1] of cutoff functions for the construction. For 7 > 0 define:

Ci(z):{o 1 if 2 e K,

xt—7—-1) if z2=¢(t,z), (t,z) € (0,00) x X

We similarly define a family of cutoff functions on Z,, denoted by ¢? for 7 > 0.
Consider now the compact manifold My obtained by gluing the compact domains
{p1 <T+2} C Zy and {py < T + 2} C Z5 along the annulus {T" < p; < T + 2}.
We can define a family of cutoff functions ¢, : My — [0,1] for 0 < 7 < T by
patching together ¢! with ¢? in the following way:

¢ = G ifpr <0
TG ifpr >0

Note that the support of (; is diffeomorphic to the finite cylinder [-T — 147, T +
1—7] x X.

We now turn to the gluing problem of two adapted operators P; : C*°(E;) —
C>°(F;) as described in §3.1.1. Our goal is to prove that we can construct solutions
of the equation Pru = f for f taking values in a complement of the substitute
cokernel introduced in §3.1.2. We shall do this by considering three regions in My:
the neck region {|pr| < T} for which our main tool is Theorem 3.10, and the two
compact regions {pr < 0} and {pr > 0}, for which we will use weighted analysis

on Z; and Z, in the form of Proposition 3.26. The crucial point of the construction
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is to understand the interactions between these three regions, especially in terms
of the obstructions to solving the equation P;u = f on each Z;. Using the pairing
(+,-) defined in §3.2.2 in order to implicitly keep track of these obstructions, we will
be able to essentially reduce this problem to a finite-dimensional linear system.
From now on we fix p > 1 and work with Sobolev spaces W'P. Let f € LP(Fr)
be an arbitrary section. We may identify the section (;f with a section of the
translation-invariant vector bundle F, over the cylinder ¥ = R x X, which we
denote by fy. Moreover, the essential support of fy is contained in the finite
cylinder [T, T] x X. Note that the Sobolev norm of sections supported in the
neck region of My and the Sobolev norm of sections supported in the finite cylinder

[—T,T] x X are equivalent. Hence, we have a bound:

[ follzr < CIl.fllze-

By Theorem 3.10, the operator P, admits a right inverse Qq : L?(F,) — WP (E,).
Thus we can define ug = Qo fo, which satisfies Pyug = fo. Using the cutoff function

(o to identify (yug with a section of Er — My, one has:

f = Prouo = f — [Pr, (oJuo — CoPrug
= (1—=¢G)f —[Pr,Co)uo — Co(Pr — Po)uo.

Note that the section (1 — (;)f — [Pr, (oJuo is supported in the compact region
{|pr| > T'}. Moreover the operator (o(Pr — Pp) vanishes in the region {|pr| < 1}

so that we may write:
f = Prlouo = f1+ fo (3.34)

where f; = x(pr)(f — Prloup) can be identified with a section of F} supported in
{p <T+1} C Zy, and fo = (1 — x(pr))(f — Prloup) can be identified with a
section of Iy over {ps < T + 1} C Z,. Both sections are LP-bounded.

From now on we fix some § € (0,0). As the coefficients of P, — Py and all
their derivatives have exponential decay as p; — oo, the LP-norm of f controls the

LE-norms of f; and f,. More precisely, the following estimates hold:

Lemma 3.27. Let d be the mazimal order of the real roots of Py. Then there exists
a constant C' > 0 such that:

I fill e < CTN fllew, 0= 1,2.
Proof. Let us prove the estimate for f;, which can be written as:
fi =0 =x(pr))((1 =) f = [Pr, Goluo — Co(Pr — Fo)uo).
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The term (1 — x(pr))(1 — 1) f is supported in the compact region {p; < 2} C Z;

and therefore satisfies:

11 = x(pr)) (@ = C) fllz < € fls

since the function (1 — x(pr))(1 — ¢1) is bounded by 1. On the other hand, the
second term (1 — x(pr))[Pr, (o]uo is supported in {p; < 1}, and the W*P-norm of
ug in the cylinder [-T — 1,T + 1] x X is bounded by CT?| f|| for some constant
C. As (y and all its derivatives are uniformly bounded independently from 7T, this

yields an estimate:

11 = x(pr))[Pr, Coluoll v < C'T|f| -

For the last term (1 — x(pr))¢o(Pr — Po)ug, we can use the bound on the W#»-
norm of ug and the exponential decay of the coefficients of P, — F, and all their

derivatives to obtain a similar bound:

11 = x(pr))Co(Pr — Po)uollzo < C"T| f|zs-

These three bounds prove the lemma. O

Next we want to understand the obstructions to solving Pu; = f; with u; €
Wf P(E;). Let us denote by (-, -)o the L:-product on the cylinder R x X equipped

with its translation-invariant metric. The key result is the following:

Lemma 3.28. Choose arbitrary norms on J£,* and 5. ForT' — oo the following
holds. If g1 € " and g1 1(t) = Ki[g1](t +T + 1), then:

(fr91) = (1, (1 = xra(p1)gr) = (1 =) fo, 91000 + O (e || fllzo | ]) -
If g2 € 25" and gor = K3[g2](t — T — 1) then:

(f2r92) = (f, (1 = xr11(p2))g2) + (1 = X) fo, 270 + O (77 || fl| ol g2l -

Remark 3.29. In the statement of the lemma and in the following proof, the nota-
tion O(e™°T|| f|lz»|lg:||) means that there is a constant C' > 0, depending on p > 1,
d € (0,0) and possibly on the choice of norms on J* but independent of T, f
and g;, such that

O™ 11 fllzellgill)] < Ce™TI| Il o [l gl
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Proof. Notice first that for any 7 < T — 2 we have:

(f1,91) = (L = x(pr)) f, 91) — (1 = x(pr)) Préouo, 91)
<(1 - X(PT))f: 91> - <(1 - X(PT))PTCTU0791>

since (¢, — Co)up has support in {p; < T — 1} and Pfg; = 0. Given the decay of

the coefficients of P, — Fy we have:

((1=x(pr))Prérstio, g1) = (1= X)Pox—2ti0, 91,100+ O (e 7| fllsllonll) - (3.35)

Moreover 1 — x(pr) = (1 — xr+1(p1)) with the usual identifications. Thus the

equality ((1—x(pr))f: 91) = (f, (1 = x711(p1))g1) clearly holds.
It remains to compute the value of ((1 — x)FPyx_2uo, g1,7)0- By integration by

parts, for any 7 < —2 we have:

(1 = x)Pox—2u0, 91,700 = (1 — x)PoX+uo, g1,7)0- (3.36)

But now we can write Pyx,uy = xrfo + [Po, XrJuo- As ug and its derivatives of
order less than k have exponential decay at infinity and the differential operator
[Py, x-] has uniformly bounded coefficients and is supported in [r — %, T+ %] x X,
it follows that

lim ((1 — x)[Po, X+]uo, 91,700 =0

T——00

and therefore we can send 7 — —oo in (3.36) and obtain:
(1 = x)Pox—2u0, g1,7)0 = TET_HOO((l — X)X+ fo, 91.1)0
= ((1 = x)fo,91,1)0

This proves the first equality of Lemma 3.28.

For the second equality we can prove as above that:

(f2,92) = (fs xr41(p2)g2) — }L%(Xpo(l = Xr)Uo, g2,r)0 + O (676T||f\|LP||g2H) :
(3.37)

Then for 7 large enough we have:

(Xpo(l - XT)U0>92,T>0 = <Xf0792,T>0 + <X[P0, 1- XT]u07g2,T>0
— <Xf07 92,T>0 - (ufm gQ,T)

as T — 00, where uy, € & is the polyhomogeneous solution defined in §3.2.3. By

Lemma 3.22, the last term is equal to:

(Ufo, gz,T) = (fo, 92,T>0-

The second equality follows. m
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In the next section, it will be useful to use a variation of the above lemma
for arbitrary solutions of the equation Pou = fy. Thus let v € & and define

uy = Qo fo + v, and as above write:
f = PrGoug = fi + f5 (3.38)

where f] € LE(F;). As a corollary of Lemma 3.28, we can describe the obstructions

to solving Pu = f/ as follows.

Corollary 3.30. Choose arbitrary norms on &, J* and J5*. Then, if g1 € J*
and g1 7(t) = kilg](t + T + 1) it holds:

(o) = (s (= (p0))g1) —((1=X) for 91,700 = (0, 12)+O (e T (| e + oDl ) -

If go € Ay and gor = K5[go)(t =T — 1) then:

(f3.92) = {f A=x41(p2))g2) +{(1=X) fo, G200+ (v, g2.1)+O (7T (|| fll o + 0] g2l -

Remark 3.31. As in the previous lemma, the notation O(e=T (|| f|lze + |lv]])|lg:l)
means that there is a constant C' > 0, depending on p > 1, § € (0, 0), and possibly
on the choice of norms on &, " and #,* but independent of T', f, g; and v such
that

O™ (Ifllzr + lDllgalD] < Ce™ (f e + [0l llgill-

So far, everything we did works without need to impose any conditions on the
real roots of the indicial operator F,. We now outline the construction which we
will perform in the next part and emphasise where the restricting assumption of
Theorem 3.6 come from. The general idea of our construction is to identify a
subspace of LP(Fr) on which we can find approximate solutions of the equation
Pru = f with good estimates and a control on the error of the form || f — Pru||» <
Ce || f||z» for T large enough. Once we can achieve this, we will simply use an
iterative process to build exact solutions, by taking successive projections onto this
good subspace.

By taking cutoffs as above, we can solve the equation Pyu = f; on the cylinder,
with a general solution of the form v = Qufy + v for some arbitrary v € &.
With the above notations, it remains to consider the equations Pu; = f/ on
the EAC manifolds Z; and Z,. The idea is to choose v appropriately so that
all the obstructions to finding decaying solutions u; € Wf P(FE;) vanish, up to
exponentially decaying errors. If this can be done, we just need to take cutoffs of

these solutions to build an approximate solution, up to an exponentially decaying
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term. Using Corollary 3.30 we have essentially reduced our linear PDE problem

to the following finite-dimensional system, where the unknown is v € &

{(v,gw) = (L0 =xralp)gn) = (L =X)fo girdo. - Vor €207 4 4,

(v, 921) = —(f, (1 = x741(p2))g2) + (1 — X) fo, G270, Vg2 € H5

where we use the notations:
gir(t) = Kilg]t+ T+ 1), and gor = K3[ge](t =T —1).

We call this system the characteristic system of our gluing problem. There are
obvious obstructions to finding a solution to this system. We need at least to
impose f to be orthogonal to all the sections of the form (1 — x741(p;))g; with
gi € K, as in this case g;r = 0. Actually, a more careful examination of the
characteristic system shows that we need f to be orthogonal to the full substitute
cokernel. Indeed, a pair (g1,92) € ;" X J* is matching at T if and only if
g1 = gor With the above notations. Thus, if there exists v € & solving the

system we must have

(f, (L= xr41(p1))g1 + (1 = X7+41(p2))g2) = 0

for any pair (g1, g2) matching at 7T

As a consequence, the substitute cokernel JZ naturally arises as a space of
obstructions to constructing approximate solutions of Pru = f by our method.
In fact, we will see that this is also a sufficient condition (Lemma 3.36). Unfor-
tunately, the coefficients of this system vary analytically with T, and therefore
the rank of the system might drop at some points. Furthermore, the system is
generally underdetermined, with an obvious kernel formed by the subspace of &
orthogonal to all g1 and g7, for g; varying in J;*. Hence, even if the char-
acteristic system admits a solution v whenever f is orthogonal to the substitute
cokernel we might not be able to obtain reasonable estimates on the norm of v,
especially near the values of T" at which the rank of the system drops. We shall
prove that these difficulties can be avoided in the case where the indicial operator

Py has only one root, which will be sufficient for our applications.

3.3.3 Main construction. Let us first consider the case where F, has a single
root \g of order 1, before generalising to any order. In that case, the elements of &

iAot

are of the form e"°'u(z) with u translation-invariant section of E,, and similarly

for &*. As a consequence, the matching condition (3.10) does not really depend
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+io(T+1)

on T, up to overall factors of e In particular, the dimensions of % and

7 are independent of 7"
dim #7 = dim J#; + dim 7 o + dim(im k£ N im ko)

and similarly for the substitute cokernel 7. This implies that we can uniformly

bound the L?-orthogonal projections onto #7 and 5

Lemma 3.32. Let p > 1 and [ € N. Then for T large enough the norm of the
L2-orthogonal projection of W'P(Fr) onto £ is bounded from above by a uniform
constant Cy > 0, depending on | and p but independent of T'. Similarly, the norm
of the L?-orthogonal projection of W'P(Er) onto 7 is bounded from above by a

uniform constant C7 > 0.

Proof. This can be proved by fixing basis for J#, )2 and imk; N im Ky and
considering the corresponding basis of #7. By Gram—Schmidt orthonormalisation,
one can deduce an explicit expression for the L?-projection, from which the lemma

easily follows. ]

Let us now choose an arbitrary complement &7 of im £} Nim x3 in im ], and a

complement &5 of im kNim 3 in im x5. Thus we have a direct sum decomposition:
imrk] +imk; =imrk] Nimk;, B E B & C E".
Pick a complement &’ of im k1 Nim Ky in &, so that the pairing
&' x (imk] +imkj) — C

induced by (+,) is non-degenerate. For i = 1,2 define &; = imk; N &’. Then the
pairings:

& x & —C and & x & — C (3.40)
induced by (-, -) are non-degenerate. Indeed, if u € & is orthogonal to & then it
is orthogonal to im k] +im x5 and therefore belongs to im x; Nim Ky, which means
that u = 0 as it is an element of &’. On the other hand if v € & is orthogonal
to &1, then it is orthogonal to im k1 and to im ko, which means that it belongs to
im k] Nim k3 and thus v = 0 by definition of &;. Therefore, if we define & as
the orthogonal space of & @ & in & for the above pairing, we have a direct sum

decomposition:
E'=ESESE.

This implies that the pairing
&y x (im k) Nim k) — C (3.41)
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is non-degenerate. These conventions will be useful to put the system (3.39) in
a more tractable form. For definiteness we prefer to work in a complement of

im k1 Nim kg, as this is the kernel of the system. This allows us to prove:

Proposition 3.33. Let p > 1 and § € (0,0). Then there exist constants Cy, C3 >
0, depending on p and 6 but not on T, such that for T large enough the following
holds. If f € LP(Fr) is L*-orthogonal to S, then there exists u € WrP(Ep)
L?-orthogonal to S#7 such that:

1f = Prulle < Coe™ || fllee and |lullwrs < C5T|fl|z0-

Remark 3.34. The constants Cy and C3 may depend on the geometric data of
the gluing problem (the manifolds Z;, the adapted bundles F; and the matching
operators P;); in this sense they are not universal. But once this gluing data is

fixed they only depend on p and ¢, the point being that they do not depend on T

Proof. Fori = 1,2, let us fix subspaces &% C C*°(FE;) as in the discussion preceding
Proposition 3.26. The orthogonal space %", of J in J; is isomorphic to im &,
so that the decomposition imx} = imk] N imk} @ &* induce a corresponding
decomposition ;% = 5, © ;" (the subscript m stands for matching).

If f € LP(Fr) is orthogonal to the substitute cokernel, we can use the above

decompositions of & amd &* to put the system (3.39) in the form:

Do, Vo € %*m
]>0a v.gl € Ji/l:il

where we decompose any element v € & as v = vg+v1 + vy € & D & B &

:ti)\()(

and the factors e+ come from w%,; = eIkt and kg p = e oI+ s

Non-degeneracy of the pairings (3.40) and (3.41) implies that this is of the form:
Av = bT(f) € RN

where N = dim & = dimim £} +dim im £} and A : & — R” is an invertible linear
map which does not depend on 7. Thus there is a unique solution v = A71b(f),

and if we fix norms on &’ and RY we have a uniform bound:
o]l < Cllor(H)]]-

As the elements of J#;* and J* are bounded in C° norm, each of the sections
(1—x71+1)g; have L9-norm bounded by CTs ||g:||, where ¢ is the conjugate exponent
of p. Thus, we can deduce that the norm of by (f) satisfies a bound of the form:

bz (£l < C'T4 |\ f| 1o
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Hence |jv]| < C"Ta Il f||z» for a constant independent of T

Following the idea outlined in the previous part, let us write:

= Pr(¢oQofo+ Gv) = fi + fo

with f; € LP(F}) and fy € LP(F), each of the sections f; being supported in the
domain {p; < T + 2} C Z;. By Theorem 3.10, we have estimates:

160Qo follwsr < CT| follo < C'T[ f1| -

Further, as v is uniformly bounded and (yv has support in a domain equivalent to
a finite cylinder [-7 — 1,7 4 1] x X we have a bound:

1
[Covllwrs < CT|v]| < C'T|| f| 1o

As in the proof of Lemma 3.27, we can use the uniform bound on v to prove that

the weighted norms of f; and f5 satisfy bounds:

[ fill e < CT|[ | e-

We now consider the equations Piu; = f; on Z; and Pous = fo on Zy. By
Proposition 3.26, there exist w; € #}, h; € @ and u; € Wf’p(Ei) such that:

Pi(u; + hy) = fi — w;.
Moreover, our choice of v implies uniform bounds of the form:
luillyro < Cllfille < CTNf e, Mhill + lwill < C"e™* | fls
for some uniform constants ¢’ and C”. Taking cutoffs we can write:
fi = Pr(xrs1(pi)wi + xr41(pi) i) = X1 (pi)wi + 7
where r; is an error term of the form
ri = (B = Pr)(xr+1(pi)wi + xria(pi)hi) + [P X741 (00) (wi + ha).

As the coefficients of P; — Pr and their derivatives have exponential decay with
T, u; has exponential decay at infinity. Given the bound on h;, it follows that for

any 0 < € < § we can bound the errors terms by:
Irillze < Ce™ | £l (3.42)
for some uniform constant. Let us define:
u = Qoo + Xr+1(p1)(ur + h1) + xrr1(p2) (uz + ha).

85



Then f — Pru = xry1(p)wi + Xri2(p2)we + 11 + 1o satisfies |[f — Prul[r» <
Ce= =97 f||z», and ||u||wtr < CT||f|z», for some constant C. By Lemma 3.32,
we can decompose u = u' 4+ w where w € Jr and u’ is orthogonal to the substitute

kernel. Moreover we have bounds:
[ lwre < (14 CDlullwee < CT\ fllre, Nwllwrs < Crllullwrs < C"T| f]] Lo

and v’ satisfies

f—PTU/:f—PTU+PTw (343)
and as w € A7, then ||Prwl||pr < Ce T ||lw|yr, < Ce O~ | 1o. O

Now we have all the tools to prove Theorem 3.6, in the case where ) is a root
of order 1. Let f € LP(Fr) be an arbitrary section. By Lemma 3.32, there exist
f e LP(Fr) and wy € 7 such that f = f 4wy, f is orthogonal to J#;* and:

1l < (L+COIfllees wollze < Cullfllze-

Moreover, by Proposition 3.33 there exist ug € W*P(Er) orthogonal to 7 and
f1 € LP(Fr) such that:
f=Prug+ fi

with bounds:
[uollwrr < C5T|| fllze < (L+ C1)C5T| f|ze

and
I fille < Coe™ || fllze < (1+ C1)Coe™T|| f| o

Choose T large enough such that n = (1 + C1)Cee T < 1, and define fy = f.
Inductively, we can construct sequences { f,, n > 0} in LP(Fr), {u,,n > 0} in the
L?-orthogonal complement of #7 in W*?(Er) and {w,, n > 0} in J#7 such that
for all n > 0 we have:

fn - fnJrl = PTun + wy, (344)
with the bounds:

[ falle <" IF1s Munllwee < 0™(1 4+ COCST | fllze, and [jwn||e < 0" Chll f|Le-

(3.45)
As WkP(Er) is complete and 1 < 1, the series 3 u,, converges. Let u = 3°°  u,,.
As each term of the series is orthogonal to J#7, u belongs to the orthogonal space
to 7 in WEP(Er). In the same way, the series 3w, converges to an element
w € 5+ 1t follows from the bounds (3.45) that we have:

1+ C)C C
T T

s < <&
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Further the map W*?(Er) — LP(Fr) is continuous, and therefore we can sum
over n in equality (3.44) to obtain f = Pru + w.
This proves the existence part in Theorem 3.6 for f in the LP range. For the

uniqueness, remark that the index of Py satisfies the inequality:
ind(Pr) > dim #7 — dim . (3.46)

As the map W*P(Er) — LP(Fr) induced by Pr is Fredholm, the uniqueness of
u € WPP(Er) orthogonal to 7 and w € 7+ satisfying f = Pru+w is equivalent
to proving that inequality (3.46) is in fact an equality. But the same reasoning
applied to Pr yields:

ind(Py) > dim ;" — dim 7.

Since ind(Pj) = —ind(Pr), uniqueness in Theorem 3.6 follows.
To complete the proof of the theorem in the Sobolev range, it remains to remark
that if one further assumes that f € W (Fr), Proposition 3.4 implies that

lullwrere < CUfllwee + lulle) < Cllfllwew + CTIf ||

for some constant C’ > 0.

Remark 3.35. One of the advantages of treating the case of a root of order 1 first is
that we proved that the Sobolev constant does not grow more than linearly with
T, whereas in the general case it is more complicated to find the optimal rate of
growth of the constant. This will be useful in our applications in Section 3.4 to

derive the rate of decay of the low eigenvalues of the Laplacian.

Let us go back to the general case, before indicating how to modify our con-
struction to treat the case of a single root of any order. We first prove our previous
claim, that without any restrictions on the number of real roots of F, the charac-
teristic system admits a solution if and only if f is orthogonal to the substitute

cokernel:

Lemma 3.36. For any T > 1 and any f € LP(Fr) orthogonal to J£, the char-

acteristic system (3.39) admits a solution v € &.

Proof. Let us use the following notations for u; € % and g, € "
rrrlu(t,z) = mlu(t+ T+ 1,2), kipln]t @) = kilwm](t+ T+ 1, 2)
and for uy € J# and gy € 5"
Ko [Up)(t, 0) = Kalup)(t — T — 1,2), K5 plus)(t, x) = Kaug)(t — T —1,2).
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As the pairing (-,-) is invariant by translation, it is still true that im &, 7 is the
orthogonal space to imx}. Thus we may proceed exactly as above, choosing a
complement & of im k1 7 Nim Ky 7 in &, and complements & of im k] p Nim K3 7

in k7 p. Once these arbitrary choices are made we can decompose:
!/
ép = o D E1r D Ear

where &, r = imk; 7 N &} and & r is the orthogonal space of & 1 & &1 in &F.
Hence the non-degenerate pairing &} x (im k1 + im ko) — C induced by (-, -)

decomposes as the orthogonal sum of the non-degenerate pairings:
g(],T X (lm R1,T Nim K:Q’T) — (C, gLT X gZiT — C and ggg‘ X gliT — C.

As in the proof of Proposition 3.33, for i = 1,2 the orthogonal space ;7 of
i in J is isomorphic to im k7 7, so that the decomposition im &} 7 = im k] 7 N
im k3 p @ &7y induces a corresponding decomposition %, = H7,, © K.
Thus if f € LP(Mr) is orthogonal to the substitute cokernel 27" the characteristic

system can be written as:

(vo, 51 rlgo]) = (f, (1 = xr+1(p1))90) — ((1 = X) fo, Kilgol)os Vg0 € 7',
(v1, 51 plon]) = (f, (1= xz41(p1))g1) — (1 = X) fo, Kilgrl)o, Va1 € K7,
(v2, k5 7[g2]) = —(f, (1 = x741(p2))g2) + (1 — X) fo, K3[g2])o, Vg2 € Ho'p |

where v = vg +v1 +v2 € &1 @ E1. 7 D Ep. Given the non-degeneracy of the above

pairings this system is manifestly invertible. O

Despite the fact that we can solve the characteristic system whenever f is
orthogonal to the substitute cokernel JZ7*, this does not imply that we can find a
solution v € & with bounds of the form |[|v|| < C(T)||f||z» with a good control on
C(T'), which was a key argument in the previous construction. This is due to the
fact that the characteristic system is in general underdetermined, and only becomes
determined after a choice of arbitrary complements &7 of im k7 Nim ke in &
and &7 of im k] 7 Nim K3 7 in im 7 7, using the notations introduced in the above
proof. In the case where F, has a single root of order 1, this was not problematic
as we could simply make any arbitrary choice independently of 7', but in general
we cannot make such a consistent choice. This is especially true at values of T
where the rank of the characteristic system drops.

As we discussed in §3.1.2, if Py has only one real root, then in a good basis the
coefficients of the characteristic system are polynomial in 7". Therefore, the rank of
the system is constant whenever 7' is large enough and we can fix a complement of

its kernel independent of 7. On this complement, the system can be inverted with
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polynomial control on the norm. Thus if f € LP(Fr) is orthogonal to the substitute
cokernel we can find solutions of the characteristic system with ||v| < CT?||f||z»
for some exponent § > 0. In the same way, all the matching conditions can
be expressed as linear equations with coefficients depending polynomially on T
Therefore, the norm of the L?-orthogonal projections onto #7 and J#7* do not
grow more than polynomially. Then we can use the same argument as above to
prove Theorem 3.6 in the general case.

In fact, any assumptions ensuring that we can invert the characteristic system
with less than exponential growth on the norm after fixing complements of its
image and kernel, and that the norm of the projections onto %7 and %7 do not

grow too quickly, would yield the same result.

3.4 Spectral aspects

In this section, we want to interpret our results from a spectral perspective. In-
deed, for self-adjoint operators the approximate kernel can be regarded as a finite-
dimensional space associated with very low eigenvalues of the operator Pr. For
the Laplacian, we shall see in §3.4.1 that the substitute kernel is a good approx-
imation of the space of harmonic forms. Orthogonally to the space of harmonic
forms, the results of the previous section imply a bound in O(T?) on the L?*-norm
of the inverse of Ar. In particular if 0 is a root of the Laplacian acting on g-forms

on R x X, then the lowest non-zero eigenvalues of A acting on g-forms admit a

C
T2 "

fastest decay rate and prove Theorem 3.8.

lower bound of the form In §3.4.2 we study the density of eigenvalues with

3.4.1 Approximate harmonic forms. We begin with a review of standard
properties of the Laplacian on EAC manifolds (see for instance [93, 6.4]). Let
(Z,g) be an oriented EAC Riemannian manifold of rate > 0, let Y = R x X be
its asymptotic cylinder and p be a cylindrical coordinate function. The space ¢4
of bounded closed and co-closed g-forms is equal to the space of bounded harmonic

g-forms. Moreover, there is a direct sum decomposition:
H = I @ A D A

where 7" is the space of decaying harmonic g-forms, 5 is the space of bounded
exact harmonic ¢-forms and 7! the space of bounded co-exact harmonic g¢-
forms. On the other hand, the map x, mapping a bounded harmonic g¢-form

to its translation-invariant expansion at infinity induces two maps
oy T — HY(X), B,:#9— H(X)
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such that k,(n) = ap + dt A By where ap and fy are the harmonic representatives
of a,(n) and f,(n) respectively. The map ¢, can be factorised as 77 — H(Z) —
H9(X), where any ¢-form in s#? is mapped to its de Rham cohomology class in
H9(Z) and the map HY(Z) — H9(X) comes from the long exact sequence of the
pair (Z, X). By [9, Proposition 4.9], ) is mapped isomorphically to the image
of the map HY(Z) — HY(Z) coming from the same exact sequence. In particular
this implies that 4! @ ] C ker a,, and by considering Hodge duals it follows
that ) ® . C ker §,. As the kernel of the map k, is 4" this implies that

ker oy = JG @ A, ker B, = I D L.

By [93, Proposition 6.18], the map 4 ® . — HY(Z) is an isomorphism, and
a, maps S} isomorphically onto the image of the map H9(Z) — H%(X) coming
from the long exact sequence of (7, X).

Let 0 < ¢ < dim Z and denote by o, the minimum of ;1 and of the square roots
of the lowest eigenvalues of the Laplacian acting on (¢ — 1)- and ¢-forms on X.
Any bounded closed and co-closed ¢-form 1 on Z is asymptotic to a translation-
invariant form 79 = ag + dt A Sy, up to terms in O(e=°°) for any § < o,. With
the above notations (o, fy) are the harmonic representatives of (o (), B4(n)). It
is a standard fact that there exists a (¢ — 1)-from £ on Z such that n —ny = d€ in
the domain {p > 1}, with |[V!¢| = O(e=%) for any [ > 0 and § < o,. A suitable
¢ can be constructed as follows. Identify the region {p > 1} with the cylinder
(1,00) x X, and write n — 19 = a(t) + dt A 5(t) where «, 5 and all their derivatives

have the usual exponential decay. As n and 7y are closed this implies:
dxa(t) = 0= ga(t) — dx5(t)

for all t > 1, where dx denotes the exterior differential on X. Hence we can define
¢ in the domain {p > 1} by
t
£(t,x) = / B(r,x)dr, Y(t,z) € (1,00) X X.
+0o0

This (¢ — 1)-form ¢ allows us to build a 1-parameter family of closed g-forms

nr =n—d(xr(p)§)

interpolating between n when p < T —% and ny when p > T+ %, which all represent
the cohomology class of n in H9(Z). Moreover, the difference ny — n and all its
derivatives satisfy uniform bounds in O(e=T) for any 0 < § < a,.

Let (Z1,¢1) and (Zs, g2) be two matching EAC manifolds, and consider the

I-parameter family of compact Riemannian manifolds (M7, g7) obtained by the
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gluing procedure explained in §3.1.1. We want to control the mapping properties
of the associated operators d + d and Ar as T — oo. Strictly speaking, these
operators differ from the operators obtained by gluing d + di with d + d; and A
with A, in the gluing region {|pr| < 2}. Nevertheless, the results of the previous
parts still apply as the coefficients of the difference and and all their derivatives
have exponential decay with T'. It is convenient to slightly modify our definition
of approximate kernel. If (n;,72) is a matching pair of harmonic forms, define a
closed form on Mr by:

m,r if pr < —%

nr=mr if pr>;

no if pr[ < 5
where both 1, and 7, are asymptotic to 7y and 7,7 and 1y are closed forms
constructed as above. It follows that nr is closed. We denote by s the finite-
dimensional space of g-forms constructed as above from a pair of matching ¢-forms.
Again, this differs from our previous definition of substitute kernel only up to terms
that are bounded in O(e~°T) as well as all their derivatives for any J < o,. Hence
our results, and in particular Theorem 3.6, still apply. As the elements of J# are

closed there is a well-defined map:
j%? — Hq<MT>

sending every element to its de Rham cohomology class. The key point is the

following theorem [96, Theorem 3.1]:
Theorem 3.37. For T large enough, the map 7 — H(Mr) is an isomorphism.

Let us briefly sketch the proof of this theorem. It relies on a close examination

of the Mayer-Vietoris sequence:
o= HTYZ) @ HT N Zy) — HTH(X) — HY(My) — HY(Z)) @ HY(Zy) — ...
As the space of approximate harmonic g-forms 52 is isomorphic to the space
Hi(Z,) ® HI(Z;) @ imag s Nimag, & im fy , Nim fy,

and since ker 3;, ~ H%(Z;), it is clear that the restriction of &7 — H(Mr) to
the space obtained by matching pairs in £ © . yields an isomorphism:

Hg(Zl> ) Hg(ZQ) ® im 014 M im Qg q =~ 1m(Hq(MT) — Hq(Zl) () Hq(ZQ))

Moreover, the subspace of 7! obtained by gluing matching pairs of bounded exact

harmonic g-forms, which is isomorphic to im 3, , Nim /3, ;, maps into the image of
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H*Y(X) — HYMz). By Lemma 3.25, im 3; , Nim 35, is the orthogonal space of
im oy 41 @im oy 4 for the inner product induced by the L?-product on harmonic
representatives, and therefore im 3, ,Nim 3 , has the same dimension as the kernel
of HY(Mr) — H9(Zy) @ H(Z,). Thus it only remains to prove that the subspace
of A obtained by gluing matching pairs of exact g-forms maps isomorphically
onto the kernel of the map HY(My) — HY(Z,) ® H%(Zs) coming from the exact
sequence. In [94, Theorem 3.1] it is proven that this is the case for T large enough.

Alternatively, one could also argue using Theorem 3.6. The spaces %7 and
H?(Mr) have same dimension by the above argument. Moreover, the Laplacian
Ar maps the orthogonal space of 5 in W%2(AYT*Mr) isomorphically onto a
complement of J#? in L?*(AYT*Mry), for T large enough. Hence the map 7 —
H%(M7) must be an isomorphism for large 7', since otherwise there would be a non-
trivial exact form in 77 and the image of the Laplacian would have codimension
strictly less than b?(Mry) in L?(AYT*Mry).

As a consequence, the L?-projection of the space .7 of approximate harmonic
g-forms onto the space #7(Mr) of genuine harmonic g-forms is an isomorphism for
T large enough. It is natural to ask how close to their harmonic part the elements
of 7 are. If n € ;! is decomposed in harmonic and exact parts n = £ + dv,

then:
1Ardv||ce = [ Az(n = )ll2 = |Arllze = O (e |In]|12)

for any 6 < 0,. By Theorem 3.6, there exists a (¢ — 1)-form n’ with Azn’ = Apdv

and satisfying a bound of the form
7 lw22 < CTP(|Agdy|| 2 < C'e™T 1|2

for some constant C’. As 1’ — dv is harmonic it follows that ||dv|zz < ||7/|| Lz,
which yields:
17 = &l = O (eIl

for any & < o, Thus not only is the L*projection of ¢ onto J#(Mr) an
isomorphism, but the norm of the projection is close to 1, up to O(e™°T) terms.
Once this inequality is established in L?, the a priori estimates of Proposition 3.4
imply that

I = Ellwrz = O (e~ [In]| )

for any [ > 0. Then, the Sobolev embedding theorem (see Proposition 3.5) yields

estimates:

In = &llwee = O (e i) lIn = Eller = O (e~ nllco)
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forany [ > 0,p>1and 0 < d < oy.

By the same bootstrapping argument, we can prove that if v € W P (AIT* M)
is orthogonal to .7 and ¢/ is the unique g-form orthogonal to #?(Mr) such that
Arv = Ar/ (or equivalently (d + df)v = (d + d5)v') then

I = V' lwio = O™ ||v|wis).

These remarks, the fact that the Laplacian At is the square of the operator d+ d.

whose only root has order 1 and Theorem 3.6 imply the following:

Corollary 3.38. Let p > 1 and l € N, and assume that 0 is an indicial root of the
Laplacian action on q-forms on'Y', that is b7 (X) + b%(X) > 0. Then there exist
constants C,C" > 0 such that, for large enough T and any n € WHP(AIT*Mry)
orthogonal to Y Mry), the unique solution o' € W2LP(AYT*My) of Any' = n
orthogonal to S9(Mr) satisfies:

17 w20 < Cllnllweo + C'T?|1l| e

Remark 3.39. If instead we assume that b7 1(X) 4+ b%(X) = 0, the results of [81]
imply uniform bounds (independent of T') for the Green’s function of the Laplacian
(see Remark 3.7).

Proof. Let us consider the operator d 4 d} acting on A*T*Mrp. Since the only real
root of d 4+ d} is 0 and this is a root of order 1, we saw in §3.3.3 that in this case
Theorem 3.6 holds with 3 = 1. Moreover, for T large enough the L2-projection
of 7 on the space of harmonic forms .77 is an isomorphism, and therefore 7%
is a linear complement of the image of d + di in W'P. Thus by Theorem 3.6 any
differential form 7 of regularity W% which is orthogonal to the space of harmonic
forms can be written as
n=(d+dy)v

for a unique differential form v of regularity W' orthogonal to the space of

approximate harmonic forms 777, which satisfies bounds of the form
[llwite < CUllwer + Tlinllze),  vllee < [lvllwe < CTnllLe

where in the second equality we use the case [ = 0 of the theorem. By the
previous remarks, the unique differential form v orthogonal to .7 (M) satisfying
(d + d)v' = n satisfies bounds of the form || — v/||yrr < Cre™T||v|lyr.r for any

k > 0 and small enough ¢ > 0, and thus for large enough 7" we also have
1V lwrsre < ClInllwes + Tlinlize),  1V1ee < 1V [lwre < CT il e
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for some constants C, C’, possibly different from the previous ones but independent
of T'. Iterating this argument, the unique differential form 7’ orthogonal to (M7 )
such that (d + d})n’ = v/, which is a solution of Arn’ = 7, satisfies the bounds

17 sz < CUWY lwrsrw + TNV l20) < Clnllwes + C"T2||n] o

for some constants C, C’, C” which do not depend on n and T large enough. [

Consequently, if 0971(X) + b%(X) > 0 the lowest eigenvalue of Ar acting on
g-forms satisfies a bound of the form A\ (7") > % as T'— oo. In the next part we
study the distribution of the eigenvalues that have the fastest decay rate, that is

of order T—2.

3.4.2 Density of low eigenvalues. We want bounds on the densities Ay int(s),
Ay sup(s) of low eigenvalues of the Laplacian Ap acting on g-forms defined in §3.1.3.
When 577 1(X) 4 b7(X) = 0, the Laplacian acting on g-forms does not admit any
real root, and thus it has no decaying eigenvalues. From now on we assume that
b 1(X) + b9(X) > 0. We shall prove Theorem 3.8 using a min-max principle.
The easiest part, which does not require the results of Section 3.3, is to find
a lower bound for A, n¢(s). Let us denote by 0 < \(T) < ... < N\, (T) < ...
the non-decreasing sequence of positive eigenvalues of the Laplacian, counted with

multiplicity. The n-th eigenvalue (counted with multiplicity) is determined by:

A
A (T) = min {max {HH;lT]HLQ,n € V\{O}} , V. CW*2(AT*My), dimV = n}
L2

where V' ranges over spaces orthogonal to harmonic forms. Using this we claim:

Lemma 3.40. Let V C C?*([—1,1],C) be an n-dimensional space of functions such
that f(—=1) = f(1) = f'(=1) = f'(1) =0 for all f € V. Let A > 0 such that for
all non-zero f € V. we have:
1 1
[ A< a2 [ pPa
-1

Then for T large enough Apa—1(x)+be(x))yn—bs(mr) (1) < %.

Proof. Any f € V can be extended as a C' function to R by setting f(¢) = 0 for
any |t| > 1. With this extension, f € W*?(R) and f” € L*(R) vanishes outside
of [-1,1] and is equal to the usual second derivative inside this interval. Let us

choose 0 < 7 < 1 small enough so that:

[ 1pwpar < a2 -yt [ 5 Par (3.47)
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for any f € V. For T > 1, let Vi be the subspace of W22(AYT2Y’) spanned by

sections of the form:
t
ta)=f|——

where f € V and v is a translation-invariant harmonic form on Y. In particular, it
has dimension dim V7 = (b7 1(X) 4+ 04(X))n over C. As the elements of Vr vanish
outside of the finite cylinder [—(t — 7)T, (1 — 7)T] x X, it can be identified with a
subspace of W22(AYT:Myz). On the support of the elements of Vp, the Laplacian
A7 and the metric gr approach Ay = Ax — 8% and gy = gx + dt* up to terms
in O(e~°"") and similarly for all derivatives, for some J > 0 appropriately small.

Therefore, there exist constants C,C" > 0 such that:

A 1 C—(STT " ’
wp Mrillsz (140 s e

nevenioy  Imllz = (L =7)2T2 jevioy IIfllz2 nevevioy Inllze

As the ratio between the W22-norm and the L?-norm on V7 does not grow more
than polynomially with 7', the second term in the right-hand-side has exponential
decay. On the other hand, by (3.47) the first term is less than % for large
enough 7" and small enough € > 0. This proves the lemma. [

We can apply the above lemma to the spaces:
V=23 Y ae®™ N (=Dfar= Y (-1)*kap =0 (3.48)
1<|k|<n 1<[k|<n 1<|k|<n

For n > 2, the space V,, has dimension 2n — 2 and for any non-zero f € V, we

have:

[ Ao < om? [ 1oPa

The above lemma yields the inequality:
Agint(s) > (2|/s] — 2)(07H(X) 4+ b9(X)) — b9(My), Vs> 1. (3.49)
We now want an upper bound on A, (s). Let us denote by
Gy« L*(N1T*Myp) N Y (Myp)t — LA(AYT*Myp) N 4 (Mp)*

the composition of the inverse of the Laplacian acting on W22(AYT* My )N Mr)*
with the compact embedding W%? < L2 The eigenvalues \,1(T) can be char-
acterised by:

Air(T) = min {max {W,n € V\{O}} ,V C L*(AT*Mz), codim V = n}
L2
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where moreover V' ranges over closed subspaces orthogonal to .7°¢(My). Since we
developed an explicit construction of solutions to the equation Arr = 7, the idea
is to show that if we impose enough orthogonality conditions to n € L?(AYT*Mry),
and not only orthogonality to the space of harmonic forms (or to the substitute
kernel), we can give explicit bounds for the norm of G7.

Let us denote by N the sum of the dimensions of the spaces of harmonic
forms with at most polynomial growth on Z; and Z,. Moreover, denote by E C
L?*([—1,1],C) the closed subspace of functions f(t) = 3 aze’*™ which satisfy:

a=0, Y (—1)’%‘/’ = (—1)kkf’; =0.

|k|=1 [k[>1
Thus E is the intersection of the kernels of 3 independent continuous linear forms
on L*([—1,1],C), and therefore has codimension 3. For f € L*(R, C) with compact
essential support let us define:
t

HIW) = [ (= f()dr
The first two conditions in the definition of E imply that for any f € E on has:

1 1

/ F(r)dr :/ 7 f(r)dr = 0. (3.50)
-1 1

On the other hand, the last condition is a matter of scaling under change of

variables. Since we have

t hrr L T2 ikt _ T(T +1) _ T2
[T(T — e dt = (lmr)ze (=1 ( ikm (k‘7r)2>

if follows that for any f(t) = 3 ape?*™ € E, the function fr(t) = f (%) satisfies:

T2 Qf  iknt
T

Hir(t) = — 3 The (3.51)

2
™ k=1

forany —T <t <T.
Bearing this in mind, we shall find an upper bound on A, (s) with the help

of the following technical lemma:

Lemma 3.41. Let V C FE be a closed subspace of codimension n, and let B,e > 0
such that for all f € V we have:

1 1 1
H t2dt<7/ t)|?dt.

[P < s [ 17

Then for T large enough Aga-1(x)4pa(x))(n+3)+n () > %.

96



Proof. The idea is to follow the construction of §3.3.3 to build a solution of Ayrr =
71, where 7 is a complex ¢-form orthogonal to the space of harmonic forms, and
showing that if we assume sufficiently many orthogonality conditions we can give
a precise bound on the constant C' such that [|v]|z: < CT?||n||z2- To do this we
need to introduce a parameter 7 > 0 and replace the cutoffs (y and ¢; (see §3.3.2)
by ¢ and Ca.

Let us define 1, = (,11m, considered as a ¢-form on the cylinder ¥ = R x X
supported in the cylinder [-7 + 7,7 — 7] x X. We pick a basis ny,...,n, of
the space of translation-invariant harmonic ¢-forms on Y, orthonormal for the

L2-product on X. Then we may write:
n-(t,x) =0t 2) + D fry()n;(2)
=1

with 7, orthogonal to any function of the form f(¢)n;(z) with f compactly sup-
ported smooth function, and f,; € L*([-T + 7,7 — 7],C). Moreover the solution
v, = @Qn, of Agrv = n, provided by Theorem 3.10 can be written as (see Ex. 3.23):

ve = Qr[n:] +2Hfj,7' R
j=1

with @, defined as in §3.2.3. Let us assume that each of the functions
te[-11] = f;-((T —7)t)

belongs to V' C E. This imposes (0971 (X)+b%(X))(n+3) orthogonality conditions
on 7. Given (3.50), the L?-functions H f;, vanish outside of [-T + 7,7 — 7], and
therefore v, € L?(AITY’) and from (3.51) it satisfies:

(T'—7)

2 2
<
= llze <

[velle < Cllnellze + 17l 22 (3.52)

B+e€
for large enough 7'. Let us consider (v, as a section of AYT% My supported in the

neck region. As such, there exists a constant C' > 0 independent of 7 such that:

1+ Ce 07

T2
e

”CTVTHL2 <
Following the method of §3.3.2, we can write:
n—Ar(GvT) =m +n

with n; € L} (AT} Z;), for some small & > 0 that we fix. Moreover, we can argue

as in the proof of Lemma 3.27 to show the bounds:
Inill2, < Ce e + C' T2 |lnll 2 < C"Te™7 ||| 2 (3.53)
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for T large enough, where ¢, ' and 7 are fixed, and C” does not depend on any of
these choices. Up to O(e™°T) terms, the vanishing of the obstructions to solving
fi = Ay with y; € W(;Q,’2 can be expressed as the vanishing of N linear forms (this
is to say that the coefficients of the characteristic system are linear in n € L?).
Thus imposing N additional orthogonality conditions on 7, we can use the same
argument as in Proposition 3.33 to show that there exists v/ € W*2, 5/ € L? such
that n — Agv/ = o/ with |||z < CT?e~7||n||z> for some constant C’ possibly
depending on ¢’ but not on 7 or 7. From (3.52) and (3.53) we can deduce:

1 + 06—67 s
W < (RS o) 2l

for large enough 7. On the other hand, as n is by assumption orthogonal to the
space of harmonic forms, so is ' and by Corollary 3.38 there exists v such that

A" = n' with a bound:
1V"[l2 < CT|of || g2 < C"T*e™" ||| 2

for some constant C” which does not depend on 7 or on T large enough. Thus if

v =1+ 1" we have Arrv = n with a universal bound:

1+ Ce™®" ,
[v]lLe < (;f + e 4 T2 T> T2
€

for some constants C,C’, C” that may depend on the choices of 4, but not on 7
and T. As ||Grn||r2 < ||v| 2 it follows that if 7 and T" are large enough then

T2
Gzl < 2 lnllze.

This inequality holds true provided 7 satisfies all the orthogonality conditions
described above, which define a closed subspace of codimension no more than
(b H(X) + b9(X))(n + 3) + N in the orthogonal space to harmonic forms in
L*(AYT¢My). The lemma follows. O

To use this lemma we consider the subspaces V! C E defined by:

n

V= {f(t) =Y ™™ € E, a, =0V|k| < n} : (3.54)

The space V! has codimension 2n in E, and for any f € V! (3.51) implies:

[P < e [ o

Hence we have an upper bound:
Agsup(s) < 2([V/s] +3)(071(X) + b7(X)) + N.
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Together with the bound on A n¢(s) this proves the first part of Theorem 3.8.
In order to prove the second assertion in Theorem 3.8, let us consider the subset

W,, C V,, defined by:

W, = { Yo ae™™ eV, Y (=K, = o} (3.55)
1<[k|<n 1<|k|<n

seen as a subspace of C*([—1,1],C). Any f € W, can be extended as a C*-

function on R, with f' € V,,. Moreover if 5 is a harmonic (¢ — 1)-form then

d(fB) = f'dt A 5. Using this, we can deduce that the density of low eigenvalues

of the Laplacian acting on exact g-forms, which we define as the density of low

eigenvalues, satisfies:

¢ (8) = 267 (X)V/5 - N,

q,inf

for some constant N, > 0. By Hodge duality, this implies the lower bound:
A7 () > 2069(X)/'s — Naim Mp—q-

As we know that A% (s)+ A¢

q,sup g,sup

that when 07(X) # 0 we have:

(s) < 2(b771X) + b9(X))\/5 + O(1), this means

A aup(8) = Mg ine(s) + O(1) = 20°(X)v/s + O(1).

g,sup
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Chapter 4

Geometry and incompleteness of
the moduli spaces

In this chapter, we begin our study of the geometry of Go-moduli spaces, which
will be the main theme for the remainder of this dissertation. Throughout this
chapter, we will denote by M a compact 7-manifold admitting torsion-free Go-
structures, by .# the moduli space of torsion-free Go-structures on M and by ¢
the volume-normalised L?-metric on .#. Our main interest is the case of manifolds
with full holonomy, which necessarily have finite fundamental group, but we will
only make the weaker assumption b'(M) = 0 unless otherwise stated.

Under this assumption, the metric ¢ has the remarkable property of being
the Hessian of a global potential function .#, with respect to the affine structure
induced by the natural map .# — H?3(M). To the author’s knowledge, this was
first noticed in the physics literature [10, 54, 55, 61] following an observation of
Hitchin [60] that the volume functional has non-degenerate (but indefinite) Hessian
on the moduli spaces.

We shall introduce the potential function .%# in Section 4.1, where we present
its basic properties and derive a few technical results which will be useful in the
next chapters. The goal of the following two sections will be to prove that Go-
moduli spaces may be incomplete, even in the case of manifolds with full holonomy.
This is based on the article [84] by the author, with some additions and slight im-
provements. In Section 4.2, we give sufficient conditions for a path in the moduli
space to have finite length, and apply it to the generalised Kummer construction
[64, 65]. In Section 4.3, we make further observations on the incompleteness ques-
tion, and tackle the cases of the resolution of isolated conical singularities [72]
and the Joyce—Karigiannis construction [68]. We also briefly discuss the general

resolution of flat Ge-orbifolds using R-data from Joyce’s monograph [66, Ch. 11],
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which we would also expect to yield finite-distance degenerate limits. These cases

were not treated in the article [84] and only appear in this thesis.

4.1 The moduli spaces as Riemannian manifolds

The aim of this section is to present the basic properties of the metric ¢ and to
set the notations which will be used in the next three chapters. In §4.1.1, we
introduce the potential function .# and make some comments as to why ¢ is the
natural metric to consider on .Z. In §4.1.2 we introduce the concept of adapted
sections of the moduli space, and explain how to use them in order to compute
the infinitesimal variations of geometric quantities defined on .#. For the sake of
completeness, we give a self-contained proof of the existence of adapted sections

in §4.1.3, where we also show that the potential is a real-analytic function.

4.1.1 The metric. In Chapter 1, we gave a brief description (following [66]) of
the manifold structure of .#, and noted that for a torsion-free Go-structure ¢ on
M, the tangent space T,4.# can be identified with the space J#3(M, ¢) of 3-forms
which are harmonic with respect to the metric g,. This identification allows us to

define a natural Riemannian metric ¢4 on .# as follows:

1

G(n,n) = Vol(2) /(Wz’)@uw v, € AP (M, ) ~ Ty M, (4.1)

where Vol(¢) is the volume of (M, g,,) which can be written as

Vollg) = [ e == [0 1 0(0) (12)

That is, the metric ¢ is just the volume-normalised L2-metric on .#. It is perhaps
worth commenting on the volume normalisation in this definition. If we denote by
M1 C A the moduli space of torsion-free Go-structures with unit volume, then
the metric & restricts to the usual L?-metric on .#, denoted by %4,. Moreover,
there is a diffeomorphism R X .# — .# mapping (t,p2) to e'vZ. Note that the
tangent space of ., can be identified with the space of harmonic 3-forms in Q3.

In the following easy lemma we show that (.#Z,%) splits a line and is isometric to

R x (A1,%):
Lemma 4.1. ¢4 = 7dt> + %,.

Proof. The vector field & = e’y € J3(M, €'y) is orthogonal to #53(M, e'p) and
we easily see that:
Ju el AB(e'p)

=7
Vol(ety)

G100, 0) =
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whence ¢4 = 7dt? + %, for a family of metrics ¥, on .#,. It remains to see that ¥,
does not depend on ¢. Under the identification Tq.# ~ 3%(M, ), we see that:

S e )appe, Je*e <77 >90€3 Ho /
%(77 7]) - Vol(etcp) - 6% gl(ﬁ,n)

which proves the lemma. O

Because of this lemma, there is no essential difference between studying the
Riemannian properties of (.#,%) and those of (.#,,%). This would not be the
case without the volume normalisation: the unnormalised L?-metric would instead
be written 7dt? + /3%, and the splitting would be lost.

Another motivation for this choice of normalisation is that, when the first Betti
number of M vanishes, the metric ¢ is Hessian. To see this, recall that there is a
local diffeomorphism .# — H?*(M). By pulling back the natural flat connection
of H3*(M), we obtain a flat connection D on .#. If (ug,...,u,) is a basis of
H3(M), where n = b*(M) — 1, we will denote by (2°,...,2") the associated local
coordinates on .# and call them affine coordinates. Then the connection D is
just the usual differentiation in these coordinates. Since the volume functional is
invariant under diffeomorphisms, it descends to a function on the moduli space,

and we can define .7 : . # — R by:
F(pP) = —3log Vol(y). (4.3)

This defines a smooth (in fact, real analytic as we will show in a moment) function
on the moduli space, which we refer to as the potential. If (z°,...2") are local affine
coordinates, we denote by %, = gfa , Fab ama 8xb7
If ¢ is a torsion-free Gy-structure on M, we will also denote by 1, € J3(M, p)
2. € H*(M). Then the first

and second derivatives of .# admit the following expressions [52, 73]:

and so on the derivatives of %

the harmonic representative of the cohomology class

0
sy

Proposition 4.2. Let x = (z x™) be affine coordinates on A and let ¢ be a

torsion-free Go-structure. Then at 09 € M we have:

1

1
T _ o — o
J“ - VO].(QO) /na A @<g0)7 and '/ab VOI(SO) /<77a77T16927(77b) 7T7<?7b)>99/'[’§0'

If b* (M) = 0, the harmonic 3-forms with respect to a torsion-free Go-structure
on M have no Q3-component. In this case, the second derivative of .Z takes the

simpler form:
1

Far = oy J e et (4.4)
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Thus the Hessian .%,, is non-degenerate and positive, and in affine coordinates
G =G, dx’dx’® = Fdatda®

where we write dz*dx! as a short-hand for the (unsymmetrised) tensor product
do* @ da! € T*.# @ T*. 4, and we will use similar notations for tensor products
of higher degree. Thus the metric ¢ is the Hessian of the potential .# for the flat
connection D. In general, if the first Betti number of M is non-zero, the Hessian of
Z is still non-degenerate and defines a metric of signature (b*(M)—b'(M), b (M))
on .. Even in the case b'(M) = 0, one could take the volume functional Vol
instead of .% as a potential, which has non-degenerate Hessian and defines a metric
on ./ with Lorentzian signature [60, 73]. In the present work we prefer to use
Z as a potential, which is the convention usually adopted by physicists. In fact,
both conventions agree when restricted to the moduli space .#; of torsion-free Go-
structures with unit volume, but we prefer to use .# since it is more convenient
to work with a Riemannian metric instead of a Lorentzian one. Moreover, since
(A ,9) is isometric to R x (#1,%) all geometric invariants of interest can be
computed in .#, which has a natural affine structure, and directly restricted to
M1, whereas it would be more difficult to do computations directly in .#; for lack

of natural coordinates.

Remark 4.3. The moduli space . also has a second natural affine structure coming
from the local diffeomorphism .# — H*(M), ¢2 — [©(p)]. The metric ¢ is also
Hessian for this affine structure, and in fact the potentials are related by a Legendre
transform [73]. Formally, the properties of these two Hessian structures are entirely
similar, and the results of this and the next chapters could easily be adapted. In
practice however, it is more convenient to consider the affine structure coming
from the cohomology class of the 3-form since it can be explicitly computed, for
in the construction of compact Gs-manifolds we always perturb a closed 3-form

within a fixed cohomology class. This will play an important role in Section 4.2.

4.1.2 Adapted sections. For the purpose of computing higher derivatives of the

potential, it will be convenient to adopt the following definition:

Definition 4.4. Let % C .# be an open subset of the moduli space. A local
section of the moduli space defined on % is a smooth map ¢ : % x M — A3T*M,

such that for any u € % the restriction ¢, is a torsion-free Go-structure

=@
Z{u}xM

on M and u = ¢,Z in . A section y is said to be adapted at uy € % if the

tangent map T, % — Q3(M) of the induced map % — Q*(M) takes values in the

space J3(M, ¢,,) of harmonic 3-forms for the metric induced by @, .

103



In affine coordinates z = (2°,...,2"), where n + 1 = b*(M), a local section
¢ = (¢z)z of the moduli space is adapted at a point 1y with coordinates z, if and
g‘;’; is harmonic for the metric induced

T=x0

by ¢z,. In §4.1.3 we will show that there exist adapted sections through any point

only if for any 0 < a < n, the 3-form

of the moduli space. The interest of working with sections that are adapted at a

point is the following lemma, which will simplify many computations:

Lemma 4.5. Let % be an open subset of # , x = (2°,...,2™) be affine coordinates
on % and vy € % with coordinates xy. Let ¢ = (pz)e be a local section of the
moduli space adapted at ug, and f: % x M — R be a smooth function. Then:

0 1 Ofe
x = ) Ya = 0,...,n.
x| _,. (Vol / J uw’”) Vol(py,) /] Ox*| _ Herg ¢ "
Proof. After a linear change of coordinates, we may choose a basis 7g,...,n, of
H3(M, ) such that ny € J32(M, p,,) and 1, € A5 (M, p,,) fora =1,...,n
and assume that (z°...,2") are the associated local coordinates (that is, 52 =

(n.] € H3(M)). In these coordinates we have:

B 1 Ofs
<Vol /fxu%> ~ Vol(pa,) / oz — a

/"LQDJCO a 1
+ 81“1 <V01(¢m)>‘mzro/fxoﬂwzo- (45)

Vol (Vx0) / oo oz
Since the section is adapted at the point z, 222 is a harmonic section of Q3 (M)

0
ox® —

Pxg

Ox0
and 8“"1 are harmonic sections of Q3.(M) for a = 1,...,n at x = x,. Hence, if
a > 1 then aa“ =z = () at x = xg, which also implies w%(fﬂ”) = 0. Therefore, both

terms in the second line of (4.5) vanish. For the derivative along the coordinate
20, there exists A # 0 such that %‘:;%” = gy, at * = 70, and by Lemma 1.6 this

implies:

Oppp. _ TA o (1 N__ T 1
920 — 31 920 \Vol(p,) )~ 3 Vol(py)

at x = xy3. Therefore the lemma also holds for a = 0 since the two terms in the

second line of (4.5) cancel each other. O

4.1.3 Regularity results. In this part, we prove our previous claims that there
exist adapted sections through every point of the moduli space .# and that the
potential function .# is real analytic in local affine coordinates. The main ingre-
dient from PDE theory is that an elliptic solution of class C? of a nonlinear PDE
of order 2 is smooth [2, Th. 12.1] (see also [13, App. A, Th. 41]). Here a solution

is called elliptic if the linearisation of the PDE at this point is an elliptic linear
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differential operator. In practice, we will use the fact that this condition is open
in the C*-topology.

Let ¢ be a torsion-free Go-structure on M and let (§,) be a basis of the space
of harmonic three-forms with respect to g,, and let 2 be the corresponding affine
coordinates centred at ¢&. Using Theorem 2.12, we seek a family of torsion-free

Ga-structures ¢, = ¢ + x%, + dw, where the 2-form w, satisfies:

Awy, + *d(F (2, + dw,)) =0

where F,(n) = ©(¢ + 1) — O(p) — 3 * m1(n) — *m7(n) + *m27(n). For € > 0 small

enough, we can consider this equation for x in an open ball B, c R**! and n
contained in an open ball U, of the space of 2-forms of regularity W*+2? that are
L?-orthogonal to harmonic forms, where we choose for instance p > 7 and k& > 1
so that the triple (p, k + 1, k) satisfies conditions (2.3) in the previous chapter.
With these choices we can apply Lemma 2.4, and thus the map induced by © on
sections of regularity W**1? is analytic at ¢. If we write O(p +1) = 3 0,,(0)n™,

then we have -
Fo(n) =Y Om(e)n™ (4.6)
m=2

and therefore if € is small enough the map:
B.@U. — WP (N*T*M) N 2 (M, p)*, (z,0) = Aw + *dF,(2°¢, + dw) (4.7)

is analytic. Moreover, by Corollary 2.11 F,, satisfies a quadratic bound of the form
| EM)|werie < O(N|Zyrs1) near n = 0. Hence (4.7) maps (0,0) to 0 and its

derivative at (0,0) in the direction of @ is the Laplacian
A WHEREP(A2T* M) N (M, )" — WHP(APT*M) N (M, @)+

which is bounded and admits a bounded inverse by elliptic regularity. By the
Implicit Function Theorem for analytic maps between Banach spaces [120], for
0 > 0 small enough there exists an analytic map © € Bs — w, € U, such that
no = 0 and for (x,w) near (0,0) the equation

Aw + *dF (2, + dw) = 0 (4.8)

is satisfied if and only if w = w,. As p > 7 and k > 1, W*2P(A2T* M) embeds
continuously into C?*(A?T*M), and thus we can see w, as a family of 2-forms
of class C* depending smoothly (even analytically) on x. Moreover, for x small
enough, the linearisation of (4.8) at w, is elliptic, since the linearisation at w is

the Laplacian. It follows that w, is a smooth 2-form for x close enough 0. Hence
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if 0 > 0 is small enough, for all x € By the 3-form ¢, = ¢ + 2%, + dw, is a
smooth torsion-free Go-structure on M, with affine coordinates (z*). Moreover,
the map * € B; — ¢, € WFP(A3T*M) is analytic, and by Lemma 2.4 it
follows that the map © € Bs > p,, € WHP(ATT*M) is analytic. As integration
defines a continuous linear form on W**LP(ATT*M), we deduce that the map

x — Vol(y,) = [ pyp, is analytic. Taking the logarithm we finally obtain:
Theorem 4.6. The potential .F is real-analytic in affine coordinates.

From the proof of the analyticity of the potential, we may also deduce our
second claim about the existence of smooth adapted sections through every point
of the moduli space. In order to do this, we want to use again the fact that an
elliptic solution of class C? of a nonlinear PDE of order 2 is smooth. One problem
is that the sections x — w, previously constructed do not satisfy any particular
elliptic equation jointly in the variables x € By and p € M. To solve this issue, we
can take advantage of the analyticity of the equations to replace the real variable x
by a complex variable z and use the fact that complex-analytic maps are harmonic
(this argument is similar to that of [78, §6]).

As in the proof of the analyticity of the potential we let p > 7 and k > 1.
Using the expansion (4.6), we extend F' to a function acting on complex 3-forms
by setting:

Fyp(im + i) = Z}% (?) O (@)
This expression makes sense for complex 3-forms that are small enough in C%-norm,
and it defines an analytic map in a neighbourhood of 0 in W*TLP(A3T*M & C).
As the map which associates to any = € Bs the unique solution w, € U, C
WHh2P(A2T*M) of (4.8) is analytic, there exists an expansion w, = ¥, 7%,
that converges in W**2P_norm. We can therefore extend it to an analytic map
in the complex coordinates z¢ = x® + 1y by w, = Y, 2%w,, which converges in
WH2P(A3T*M ® C) for z belonging to a small polydisc B centred at 0 in C"*?,
For all z € By, w, satisfies equation (4.8), and by analyticity we may deduce that

for all z € B we have:
Aw, + *dF,(2°¢, + dw,) = 0.

As p > 7 and k > 1 we have W¥**2P C (2, and thus the above equations holds
strongly in the C?-sense. Moreover, by composition the map z € B} — @, €
C?*(A’T*M @ C) is complex-analytic, and since the evaluation map at a point
p € M defines a continuous linear map from C*(A*T*M ® C) to A*T; M @ C the
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map z € B} — w.(p) € A*T, “M ® C is also complex analytic. In particular it is

harmonic, in the sense that it satisfies:

+ =0, Vpe M, Vze B;.

Thus, if we consider @ as depending jointly on the variables z = (2°,...,2") € B}

and p € M and define the elliptic differential operator

n 82 62
O—A- +
2 ey g

then w is a C? solution of the following nonlinear PDE:
Ow, + *dF,(2%¢, + dw,) = 0. (4.9)

The linearisation at @ of the above equation at any point (0,p) € B X M is the
operator [, and thus if ¢ is chosen small enough then w is an elliptic solution
of (4.9) on B§ x M. Applying again [2, Th.12.1], we deduce that @ is smooth
jointly in the variables (z,p). Restricting to real values of z, this proves that
T = 0, = o+ %, + dw, defines a smooth section of the moduli space through
wo. The fact that this section is adapted at g, i.e. that the derivatives with
respect to x at x = 0 are harmonic 3-forms, follows from the quadratic bound on

F, near n = 0.

4.2 Incompleteness of the moduli spaces

In this section, whose results appear in the paper [84] by the author, we prove that

Go-moduli spaces may be incomplete. We begin with some motivation.

4.2.1 Motivation and strategy. One of the most basic questions that one may
ask about the geometry of .#! is whether it is complete or not. As we mentioned
in the introduction, the analogous question has been extensively studied in the
complex geometry literature in various contexts. A well-understood case is that
of the Kéahler cone of a compact Kéhler manifold, where the natural metric also
admits a global Hessian potential. The Kahler cone can be described in terms
of the intersection form and the classes of analytic cycles [36], and there is a
simple necessary and sufficient condition for a cohomology class at the boundary

of the cone to be a finite-distance limit [92]. Examples where the Kahler cone is

!Note that there is no essential difference between considering the full moduli space .# or the
unit-volume moduli space .#; for the question of completeness since .# is isometric to R x ..
We use .# as a matter of convenience in order to take advantage of its affine structure.
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incomplete include Kummer K3 surfaces, where a sequence of hyperkahler metrics
degenerating to T*/Z, occurs at finite distance. In the case of moduli spaces of
polarised Calabi—Yau manifolds, the Weil-Petersson metric can be studied using
Hodge-theoretic methods, and there are known examples where the moduli spaces
are incomplete as well as some characterisations of finite-distance degenerations
[117]. See the introduction for a more detailed discussion of these results.

Based on these results, one would expect that it is a general feature of special
holonomy manifolds that certain degenerate limits occur at finite distance, causing
the moduli spaces to be incomplete. Therefore, a more refined question is to derive
geometric conditions to characterise finite-distance limits and to distinguish them
from infinite-distance limits. This question is also very relevant to physics and
the swampland programme which we already discussed at various points: at least
naively, the hope might be that finite-distance limits correspond to the formation
of singularities which are relatively mild, as opposed to infinite-distance limits
where the low-energy effective description of physics would break down.

A difficulty in trying to adapt the known results about the incompleteness of
Kéhler cones or Calabi-Yau moduli spaces is that they ultimately rely on tech-
niques of complex algebraic geometry together with the link to Riemannian ge-
ometry provided by Yau’s solution of the Calabi conjecture [123]. By contrast,
Gy-manifolds are only amenable to differential-geometric methods and little is
known about the global properties of .# . In this section, we shall obtain sufficient
conditions for a degenerate family of Go-manifolds to represent a finite-distance
limit in the moduli space. These conditions have the advantage of being easy to
check for the known constructions of compact Go-manifolds, and we shall deduce
an elementary proof that Go-moduli spaces can indeed be incomplete. However, we
will not attempt to address the question of whether these conditions are optimal
or necessary; in fact, the author tends to think that they are not, but improving
them might require new tools and ideas.

To prove that the moduli space of a certain Go-manifold is incomplete, the
idea is to find a path of torsion-free Ga-structures degenerating towards a singular
limit and prove that it has finite length in the moduli space. The natural paths to
consider are those constructed by gluing-perturbation methods, which are typically
indexed by a parameter representing the size of the gluing region. To compute the
length of a such a path, we a priori need to differentiate the family of torsion-free
Ga-structures with respect to the gluing parameter to deduce the velocity vector
along the corresponding path in the moduli space and estimate its L?>-norm. There

is ongoing work by J. Li [86] using this approach, but there are many analytical
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difficulties related to the fact that the torsion-free Go-structures obtained after
perturbation are only implicitly defined, making this method difficult to implement
in detail.

Here we adopt a much simpler approach, in which the analytical difficulties
disappear. To circumvent the analysis, the idea is to consider not the length but
the energy (the integral of the squared velocity) of a path and make use of the
special properties of the metric 4. We derive an expression for the energy of a
curve that involves derivatives only of the cohomology class of the 3-form and no
derivatives of the cohomology class of its dual 4-form. Interpreting this expression
in geometrical terms allows us to give simple sufficient conditions for a path of
torsion-free Go-structures to have finite energy and length, which notably applies

to Joyce’s generalised Kummer construction [64, 65].

4.2.2 Length and energy of paths in the moduli space. Let M be a compact
oriented 7-manifold with b!'(M) = 0 admitting torsion-free Go-structures. We aim
to compute the energy of a path in the moduli space .# for the metric ¢. The idea
is to use the fact that the metric ¢ is the Hessian of a global potential. Indeed,

for such metrics we have the following result:

Lemma 4.7. Let P be a manifold equipped with a flat connection D and let g be
a Riemannian metric on P which can be written as the Hessian of a global smooth
potential F : P — R, that is, g = D*F. Then if v : [0,1] — P is a path of class

C? in P we have
1 1
| 9G350t = dy FG) = dyo FGO) = [ dyo FE()de
where Y(t) = %(t) € Ty P and 5(t) = 24(t) € Ty P.

Proof. Let us consider the function h(t) = (d.% ) (¥(t)). Since F' is smooth and
v is a path of class C?, the function h is C*'. Moreover the first derivative of h

satisfies

() = D3 F((8),4(t) + dyy F(3(t)) = g(3(t), 7(8)) + dyoy F (5(2)).
The lemma follows by integration by parts. m

This lemma allows us to derive a simple energy formula for a path in .Z.
First, we make a few remarks about notations and the regularity of paths. We
will say that a family of torsion-free Go-structures {¢;}ieo,m on M induces a path
of class C* in M (k € NU {oo}) if the path {¢;Z}ieo.1 is of regularity C* in
M . We emphasize that we do not require the 3-forms ¢, to be of class C* jointly
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in the variable ¢ and in local coordinates on M, since at no point will we need to
consider partial derivatives of ¢, with respect to the variable ¢. In practice, if ¢, is
a continuous family of Gg-structures on M and the cohomology class [p;] defines
a path of class C* in H*(M), then {¢;}ie(o,r induces a path of class C* in .Z,
since the moduli space is locally diffeomorphic to H3(M). Although the energy
is defined for a path in .# which is merely C!, we will need to consider paths of
class at least C? so as to differentiate and integrate by parts some expressions.

If {¢t}ieor) induces a path of class C? in #, we denote by ¢, € T, .4 the
velocity vector along the induced path in .# and by ¢, = %gbt € T, M the
covariant derivative of ¢; along the path for the flat connection D associated with

the local diffeomorphism .# — H?(M). In particular [¢;] = d[d‘it] and [¢] = dil[tﬁt].

From the previous lemma we may deduce:

Proposition 4.8. Let {¢;}icor) be a family of torsion-free Ga-structures on M,
inducing a path of class C? in M . Then for any T € (0,T] the energy of the path

{1t }eeprm reads:

1 dlei]
EX( / )dt =
SOt SOt ) (pt VOl (907_) <

+/T Voltgpt) < d[tQ U [O(wr)], [M]> dt.

Proof. This follows from the previous lemma and from Proposition 4.2 with implies
that

dgz(pt (Spt)

i f #1000 =~ (L u e )

and similarly

. 1 d[4]
dZ, =— uU[e M]).
2 = ~gaiir el U e o
These expressions together with Lemma 4.7 yield the desired formula. O]

By the Cauchy-Schwarz inequality, the length LI (4:) = Jo \/%,, (¢4, ¢1)dt and
the energy of the curve {¢¢}ie(or) satisfy the inequality L§ (¢)* < TE] (¢;) and

therefore we immediately deduce:

Corollary 4.9. With the same assumptions as in the previous proposition, assume
that there exist a constant C' > 0 and a nonnegative integrable function A : (0,T] —
R such that for allt € (0,T] we have

(el utogeor )| < volte
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and

K{%JUEwmww>SA@ﬂ“W”

Then the energy and the length of {¢i}icr) are finite.

We finish this part with a few remarks about (co)homology groups. If M is a
smooth manifold, we denote by H?(M) the de Rham cohomology groups, which are
isomorphic to the singular cohomology groups with real coefficients. The singular
homology groups with real coefficients are denoted by H,(M) and (-, -) denotes the
natural pairing between H?(M) and H,(M). Any homology class [C] € H,(M)
can be represented by a smooth singular p-cycle C' = 3" a,0;, where 0 : A, — M
are smooth p-simplices and A, denotes the standard oriented p-simplex. If 7 is a

closed p-form on M, we have

(- [ = i [ oin.

In particular the right-hand side does not depend on a particular choice of repre-
sentative for [C], and for this reason we will denote (with a slight abuse of notation)
Jieyn = ([n, [C]). In the remainder of the chapter, all singular chains are assumed
to be smooth.

If ¢ is a Riemannian metric on M, the volume of a p-chain C' = Y}, a;0; is
defined by

Vol(C, g) = 3 Jas /A Vol,e, .

If M has dimension 7 and is endowed with a co-closed Gso-structure ¢, the dual
4-form ©(yp) is a calibration [67]. Hence for any 4-simplex o we have +0*0(p) <

Volg+g,, and therefore for any 4-cycle D we have a bound

/[D] O(p)

Note that the left-hand side is topological and independent of the choice of repre-

< Vol(D, g,). (4.10)

sentative of [D], whilst the right-hand side is geometric and depends on the choice
of 4-cycle D.

4.2.3 Incompleteness for generalised Kummer Go-manifolds. In this sec-
tion, we consider a simple model of gluing construction of compact Go-manifolds.
Topologically, it can be described as follows. Let U be a compact oriented 7-
manifold with boundary and denote U = U\OU. We denote by X1,...,%,, the
connected components of U, each of which is a compact oriented 6-manifold.

We may assume that there are disjoint neighbourhoods W; of ¥;, diffeomorphic
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Figure 4.1: Gluing construction.

to (0,1] x %;, such that Uy = U\ [I; W; is a manifold with boundary diffeomor-
phic to U and a deformation retract of U. We denote by U, its interior, which
is diffeomorphic to U. For each i, we consider a compact oriented 7-manifold Y;
with boundary 9Y; = ¥;, and let K; be a compact subset of ¥; = Y;\X; such
that Y;\K; ~ (—1,0) x ;. We may assume that the orientation induced by Y
on ¥; is the opposite of the one induced by U, and that K; is a compact manifold
with boundary diffeomorphic to Y; and a deformation retract of Y,;. Given this
data we construct a compact oriented 7-manifold M = (U I[;Y;)/ ~ by identifying
the i-th end of U with the end of Y;; that is, the equivalence relation ~ identifies
(s,x;) € (0,1) x 3; C U with (=s,z;) € (=1,0) x 3; C Y;. Thus U and each Y;
can be seen as open subsets of M, and moreover M can be decomposed as the
disjoint union Ug [1(1L;(0,1) x 3;) [I(ILK;).

The real homology groups of M can be deduced from the Mayer—Vietoris exact
sequence of the decomposition M = U U ([1, Y;), which reads:

= @ H,(E) = Hy(U) & (8:Hp(Y;)) = Hy(M) — &, Hp 1 (X)) — -+ (4.11)

We are mainly interested in p = 3,4. As H,(U) ~ H,(U) and H,(Y;) ~ H,(Y,),
the maps @;H,(%;) — H,(U) & (®;H,(Y;)) in (4.11) are determined by the long
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exact sequences of the pairs (U,U) and (Y;,dY;). A particular role is played by
the boundary maps

coming from the exact sequences of (Y;,9Y ;). In the next lemma, we show that if
all the boundary maps ¢; are trivial, then H3(M) has a basis represented by cycles

supported away from the gluing region.

Lemma 4.10. Assume that §; = 0 for all . Then there are 3-cycles Cy,...,C,
supported in Uy and C;q, ..., C;p, supported in K; such that:

(i) The homology classes [Cy), [Cyj] form a basis of H3(M).

(1t) If [Dy], [Di;] € Hy(M) is the dual basis for the intersection product, then the

classes [D;;] can be represented by cycles supported in K;.

Proof. Since §; = 0, the maps H3(Y;) — H3(Y;,0Y;) are surjective. Thus we
deduce that H3(Y;) ~ H3(Y;) ~ im(H3(0Y;) — H3(Y;)) ® E;, where E; C H;(Y;)
is isomorphic to H3(Y;,dY;). As the maps Ho(0Y;) — Hy(Y;) are injective, so is
the map @®;Hy(%;) — Hay(U) @ (B;Ha(Y;)) in the exact sequence (4.11). Thus we

obtain an exact sequence
e @z’H;J,(Ei) — Hg(U) S¥ (@ZH:;(Y;)) — Hg(M) — 0.

Hence there exists a subspace E C H3(U) such that E®FE,®- - - E,, is a complement
of the image of @&;H3(%;) in H3(U) & (®;Hs(Y;)), and therefore H3(M) ~ E &
E1 @ - & E,,. It follows that there are homology classes [C}] € E C H3(U),
k=1,...,n,and [C;j] € E; C H3(Y;),i=1,...,m, j =1,...,n;, which form a
basis of H3(M ), where n = dim E and n; = dim E;. Moreover, K is a deformation
retract of Y; and hence the classes [C};] can be represented by cycles supported
in K, and similarly the classes [Cy] can be represented by cycles supported in Uy
since H3(Uy) ~ H3(U).

Now we prove that the homology classes [D;;] € H4(M) can be represented by
cycles supported in K;. As each Y; is an oriented compact manifold with boundary,
there are non-degenerate intersection pairings Hy(Y;) x H3(Y;,0Y;) — R. By
construction, the basis [C};] of E; C H3(Y;) induces a basis of H3(Y;,dY;), and
we denote by [Dj;] € Hy(Y;) its dual basis for the intersection product of Y;. We
can assume that the cycles Dj; are supported in K; since Hy(K;) ~ Hy(Y;). As
the classes [C1],...,[Cy] € H3(M) are represented by cycles supported in Uy and
the classes induced by [D;,] in Hy(M) are represented by cycles supported in Kj,
the intersection of [Dj,] and [C}] is trivial in M, and the intersection of [Dj;] and
[Cie] is 1if (4, j) = (i, ') and 0 otherwise. Thus [D;;] = [Dj;] € Hy(M). O

113



From the Gs-perspective, we typically think of U as the smooth locus of a
singular Gy-manifold, and in particular U comes equipped with a torsion-free
Go-structure ¢y. The noncompact manifolds Y; are endowed with families ¢;
of torsion-free Go-structures with prescribed asymptotic behaviour, which should
match the behaviour of ¢y near the i-th end of U. One then uses some inter-
polation procedure to construct a family of closed Go-structures ¢; on M, such
that outside of the gluing region @], = @oly, and @i, = @i4l x,- Much of
the subtlety of the construction lies in the choice of interpolation in the gluing
region, but for our purpose these details are irrelevant. Provided the torsion of ¢,
is small enough and there is some control on other geometric quantities (notably
the injectivity radius and the norm of the curvature tensor), the general result of
Joyce [66, Th. 11.6.1] ensures the existence of a torsion-free Go-structure ¢, on M
such that [@;] =[] € H*(M) and ||@; — ¢¢|lco < €1, where €; > 0 is some fixed
small constant. By taking €; small enough we can assume that | — ¢||co < €
implies 271g,, < 95 < 2g, for any Gao-structures ¢, ¢. The following theorem gives
sufficient conditions for the path {@; }ic(0,7] to have finite energy and length in the

moduli space:

Theorem 4.11. Let {@; }ie(0,11 be a continuous family of torsion-free Go-structures
and {@t}ico,m be a family of closed Ga-structures on M, such that (@] = [¢4] €
H3(M) and ||¢r — @illco < e for all t € (0,T]. We assume that wo = @y, is
independent of t, that each Y; is endowed with a family of closed Go-structures
{@itticor such that @t|Ki = SOz‘,t|Ki for all t € (0,T], and that the following

assumptions are satisfied:
(i) b*(M) = 0, and each boundary map &; : H3(Y;,0Y;) — Ho(9Y;) is trivial.

(it) For alli and all [C] € H3(Y;), the function fic)(t) = [ic) ¢ir is of class C*

(iii) There exists a metric g; on each Y; such that g,,, < g; for all t € (0,T].
Then {@t}ieo induces a path of class C* in M with finite energy and length.

Proof. Let us consider the bases [Cy|,[Ci;] € Hs(M) and [Dyl, [D;;] € Hy(M)
provided by Lemma 4.10, and denote by [C}], [Cf] € H?*(M) and [D}],[Dj;] €
H*(M) their respective dual bases. The cohomology class [@;] € H3(M) reads

m  ng

3] = ol = > a0ICH + 3 Y ag (0[]

i=1j=1
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where

ag(t) = o, and a;;(t) = Ot
(& ’ [Ci5]
Since the restriction ¢y, is constant and the homology classes [C1], ..., [C,] are
represented by cycles supported in Uy, the functions a4, . .., a, are constant. More-

over, as the homology classes [C;;] are represented by cycles supported in K; and
@il i, = wiily,, we deduce that a;; = fic,;), and thus a;; is of class C?, ay; is L'
and therefore a;; is uniformly bounded. This implies in particular that {&t}iem

induces a path of class C? in ..

Similarly, the cohomology class of the 4-form can be written

3

m n;

[O(80)] = > be(t)[Di] + > > bis(1)[D}]

k i=1j=1

where

()= [ @) and by(t)= | e(@)

(D]
As the bases [C}], [Cy] € H*(M) and [Dj], [D;;] € H*(M) are dual for the cup-

product and the functions a; are constant, it follows that:

<d[§1ﬁ] U [O(2:)], [M]> = iibij(t)a;j(t)’ and
<d2[2’§t] Ule(ed)]: [M ]> N ggbij(t)aié(t)

We remark that Vol(yy) > [i;, 0o > 0 for all ¢ € (0,77, and as ||¢; — ¢f|co < € it
follows that Vol(g;) is uniformly bounded below away from zero. Moreover, since
7, are L', it is enough
to show that the functions b;; are uniformly bounded to apply Corollary 4.9.

the functions a;; are uniformly bounded and the functions a

Since @, is co-closed the 4-form ©(p;) is a calibration, and by (4.10) we have

), 0@

As [[@r — ¢illco < €1 we have g5, < 2g,,, and thus g5,

|bi(1)] = < Vol(Dy;, g3,)-

o, S 2 90u| . < 2 il By

Lemma 4.10, we can assume that the 4-cycle D;; is supported in K; and thus

i

Hence the functions b;; are uniformly bounded. Therefore the path {@t}te(oﬂ

satisfies the assumptions of Corollary 4.9 and the theorem follows. O
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In the case of the generalised Kummer construction [64, 65], U is the comple-
ment of the singular set of a Gy-orbifold T7/T', where I' is a finite subgroup of
Go, and thus U carries a flat Go-structure . Each connected component of the

singular set of T7/T is assumed to have a neighbourhood isometric to either

1. (T3 x B*/G;)/F;, where T? is a flat 3-torus, B* C C? a Euclidean ball, G;
a finite subgroup of SU(2) acting freely on C? except at the origin, and F; a

group of isometries of T° x C%/G; acting freely on T3; or

2. (S' x B%/G,)/F;, where S! is a flat circle, B® C C® a Euclidean ball, G; a
finite subgroup of SU(3) acting freely on C? except at the origin, and F} a

group of isometries of S x C3/G; acting freely on S.

The noncompact manifold Y; used to resolve a singularity of the first type
is V; = (T° x X;)/F; where X; is an Asymptotically Locally Euclidean (ALE)
space with holonomy SU(2) asymptotic to C?/G;, equipped with an Fj-action
such that (T3 x X;)/F; is asymptotic to (T° x C?/G;)/F;. Tt has boundary ; =
(T3 x S?/G;)/ F;, and in particular Ho(3;) ~ Ho(T3)%:. In addition, it follows from
the Kiinneth theorem — taking into account that H;(X;) = 0 since hyperkéhler
ALE spaces are simply connected — that Ho(Y;) ~ Hy(T?)!" @ Hy(X;)'. Thus
the map Hy(9Y;) — Hy(Y;) is injective, which implies that the boundary map
8; + Hy(Y;,0Y;) — Hy(9Y;) is trivial. The manifold Y; is endowed with a family

of torsion-free Go-structures lifting to 7% x X; as
it =01 N0y N\ O3 — t2(01 A wi1+ 0 ANwio+603Aw;s)

where (61, 62, 63) is a basis of harmonic 1-forms on 7% and (w; 1, w; 2, w; 3) is an ALE
hyperkéahler triple on X;. It follows that for any homology class [C] € H3(Y;) we
have f;c1(t) = aijc) + bi,[C}t2 for some constants a; ¢y, b;c] € R. Moreover, the
associated metric on 7% x X; is a product grs + t?gx,, where grs is a flat metric
on 7% and gx, is an ALE metric on X;. In particular g,,, < g,,, for all ¢ € (0, 1].

For the second type of singularities, the manifold Y; is of the form Y; = (S! x
Z;)] F; where Z; is an ALE manifold with holonomy SU(3) asymptotic to C*/G;,
equipped with an Fj-action such that (S* x Z;)/F; is asymptotic to (S*xC3/G;) / F;.
Here the boundary of Y is 3; = (S! x S?/G;)/F; so that Hy(%;) = 0, which in
particular implies that the boundary map d; : H3(Y;,9Y;) — Ho(9Y;) is trivial.

There is a family of torsion-free Go-structures on Y; which lifts to S! x Z; as

Pit = 20 A w; + 2 Re Q)

116



on Y;, where # is a nontrivial harmonic form on S', w; a Kéahler form and €; a
holomorphic volume form on Z; such that (w;,2;) is an ALE torsion-free SU(3)-
structure. Thus for any homology class [C] € H3(Y;) there are constants a; ) and
biic) such that f; c)(t) = a;c1t* + bicpt®. As in the previous case, the metric g, ,
lifts to the product gg1 +t*gz on S* x Z; and hence g, , < g,,, for t € (0,1].
When the gluing data of the generalised Kummer construction is chosen so
that b'(M) = 0, all of the assumptions of our theorem are satisfied and thus the

degeneration to T7/T corresponds to a finite-distance limit in the moduli space.

Corollary 4.12. The generalised Kummer Go-manifolds constructed in [64, 65]

have incomplete moduli spaces.

4.3 Further observations

In the last section of this chapter we make some additional comments on the
incompleteness question. In §4.3.1, we give a necessary condition for the limit of
a path whose cohomology classes form a line segment in H3(M) to be at infinite
distance (this appears in [84]). In the next part, which is original material and
does not appear in the article, we use the contrapositive to prove that the other
known resolution methods also yield Go-manifolds with incomplete moduli spaces.

In 4.3.3 we finish with some open questions.

4.3.1 Infinite-distance limits and the volume of cycles. Let us consider
a path of torsion-free Go-structures {;}iec(0,r7 Whose cohomology classes form a
line segment in H?(M) (see Figure 4.2). We saw in the previous section that this
occurs in the generalised Kummer construction when all the singularities of 77 /T
are resolved by gluing quotients of products of a 3-torus and a hyperkdhler ALE
space (then the cohomology class [p] is an affine function of t?). We will see
that it is also satisfied for the Joyce-Karigiannis construction and the resolution
of isolated conical singularities. In this general situation, we can give a very simple
sufficient condition for the length of the path to be finite; or by contrapositive, a
necessary condition for the limit of this path to be at infinite distance.

To further motivate this question, let us compare with the case of Kéhler
cones, which we mentioned in introduction. Let X be a compact Kahler manifold
of (complex) dimension n > 2 and let £ be the cone of Kéhler classes on X.
This is an open convex cone of the space of real (1,1)-forms. Let us denote by
 the closure of % in HY(X;R), and 0. = ¢ \.#. The Kéhler cone has

a natural metric (the Hodge metric), which comes from the Hessian potential
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0D
2 o
(0]
H*(M)
Figure 4.2: A path in .# forming a line segment in H3(M).
—log [y w"/n! = —log Vol(w). A natural question to ask is which classes o € 0%

(called numerically effective, or nef classes in complex geometry) correspond to
infinite-distance limits for this metric. The answer is simple: either [y " =0, in
which case this is an infinite-distance limit; or [y o™ > 0 (such a class is called big)
and the limit is at finite distance [92]. Let us give a brief sketch of the argument.
If [x o™ = 0, then any path w; € # converging to o € H"(X;R) has [y w!" — 0,
and such limit is at infinite distance. Otherwise [y a™ > 0, and if w € # we can
consider the path w; = o+ tw. For t € (0,00) we have w; € #, and moreover
% = d;;’t = 0. Arguing along the same lines as in the proof of Proposition

4.8, one can see that for any 7 € (0,1] the energy of the path {w;}ie(r1 is

w and

. CxwA ettt fwA (etw)!
El(w) = (n — 1)! Vol(w,) B (n — 1)!'Vol(wy) '

T

Since [y a™ > 0, Vol(w;) is uniformly bounded below away from zero as 7 — 0,
and as the numerator of the first term is a polynomial function of 7 it remains
bounded as 7 — 0. It follows that the path {w;}:c (0,1 has finite energy and length
in #°, and thus « is a finite-distance limit.

Let us now go back to the Gs-case, and consider family of torsion-free Go-
structures {¢; }1e(0,r] on a compact 7-manifold M with b*(M) = 0, inducing a
smooth path in the moduli space .. We assume that [¢;] = [po] + t[¢], where
(0], [¢] € H3*(M) are fixed cohomology classes. Heuristically, we want to think
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of [pg] as lying on the boundary of the image of .Z in H3(M). As ¢ = 0 we

% = D2 .F (41, ¢¢) > 0, and thus the function .7 (@) = —3log Vol(py)

is convex on (0,7]. Hence Vol(y;) is bounded above, and either Vol(yp;) — 0 as

have

t — 0 or it is uniformly bounded below away from zero. If the volume shrinks to
zero, then the limit of ¢, as ¢ — 0 is at infinite distance in the moduli space. The

remaining interesting case is when Vol(y;) is uniformly bounded below away from

1]

zero. As =5

= 0, the energy takes a particularly simple form:

pr(y - SELUO@ILIMD _ eluOGn) M),

Vol(g,) Vol(¢r)

So far the situation is very similar to that of Kéhler cones, except for one crucial

difference, which is that [©(y,)] has no reason to be a merely polynomial function
of 7. Thus we do not know whether the numerator of the first term remains
bounded as 7 — 0, and it may be that the limit of ¢; as ¢ — 0 is at infinite
distance in the moduli space even though the volume is bounded below. Such
a phenomenon, if it occurs, would be a feature of Go-moduli spaces that has no
analogy in the geometry of Kéhler cones.

To gain more insight into the geometry of such a situation, let us denote by
PD[¢] € Hy(M) the Poincaré-dual class of [¢]. Then we can bound the numerators
in (4.12) by

[([e]U[O(py)], IM])] =

[, 00| < VollPDIgLg.)  (413)

where we define Vol(PD[¢], g,,,) as the infimum of Vol(D, g,,) taken over the 4-
cycles D representing PD[p] € Hy(M). If Vol(PD[¢], g,,) is bounded, then we
easily deduce that the energy of {¢;}ie(or) is finite. As the energy ET(¢) is a
decreasing function of 7, it is in fact enough to assume that Vol(PD[¢], gy, ) is

uniformly bounded for some sequence t; — 0. By contrapositive, we obtain:

Proposition 4.13. Let {¢;}ico1) be a family of torsion-free Go-structures on M
. . . dlpt p

inducing a smooth path in A, and suppose that the cohomology class % = [¢]
is constant in H3(M) and that the volume of (M, ;) is uniformly bounded below
away from zero. If the limit of vy as t — 0 is at infinite distance in the moduli
space, then

Vol(PD[¢], g,) = 00 as t — 0.

Heuristically, this result says that if there is a point of the boundary of .#
that can be approached by a path of torsion-free Go-structures whose cohomology

classes form a line segment in H3(M), then there is the following trichotomy.
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Either the volume is shrinking to zero along the path, in which case the limit is at
infinite distance; or the volume is bounded below away from zero and the length
of the path is infinite, and in that case there must be a homology class in degree
4 whose volume is going to infinity; or this is a finite-distance limit. Some of the
generalised Kummer Go-manifolds provide examples of the third case, and the first
case occurs for instance by scaling any torsion-free Go-structure. However, we do
not know if the second case can happen, and as previously noted this would have
to be a phenomenon specific to Go-moduli spaces, by contrast with what can occur
at the boundary of Kéhler cones.

Proposition 4.13 can be generalised to families of torsion-free Go-structures
whose cohomology classes define a path in H?(M) which is regular enough. For

instance, it is straightforward to deduce from Corollary 4.9 the following:

Proposition 4.14. Let {¢}ico.1) be a family of torsion-free Go-structures on M
inducing a path of class C? in A, and assume that the following conditions are
satisfied:

(i) The volume Vol(g;) is uniformly bounded below away from zero.
(i) The function t € (0,T] — j—;[gpt] € H3(M) is L.

(71t) The volume of any homology class [D] € Hy(M) with respect to g, is uni-
formly bounded.

Then {i e, has finite energy and length in the moduli space.

In the next part we shall use this proposition to prove that Go-manifolds con-
structed by the Joyce-Karigiannis construction [68] or by resolution of isolated
conical singularities [72] also correspond to finite-distance degenerations in the
moduli space. In these cases it is clear that the total volume is bounded below
away from zero and that all homology classes have bounded volume, and the only
assumption that is left to check is the one concerning the derivatives of the path
of cohomology classes. In fact in the first two cases the path of cohomology classes
form a line segment in H? so this condition is easy to verify; and for the resolu-
tions of T7/T" the path of cohomology classes is a polynomial function of the gluing

parameter.
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4.3.2 Other degenerate limits. Let us begin with the Joyce-Karigiannis con-
struction. Although the geometrical aspects of this construction are substantially
more complicated than the generalised Kummer construction that we treated ear-
lier, its topology is quite simple. Specifically, we will see that we are again in
the very favourable situation where we can choose a basis of 3-cycles supported
away from the gluing region, which makes it very easy to compute the path of
cohomology classes.

First, let us briefly outline the topology of the construction. It starts with a
Go-manifold (N, ¢) endowed with an involution ¢ preserving ¢, such that the fixed
locus is an associative submanifold L C N, and a nowhere-vanishing harmonic
1-form A € Q'(M). Let v be the normal bundle of L in N. The Gy-structure ¢
induces an identification of 7L with A2 v* by inserting a 1-form into ¢. Conse-
quently, there is a unique family of complex structures J : v — v defined on the
fibres of the normal bundle such that A can be identified with A(.J-,-), where h is
the restriction of g, to v. One can use this data to construct a fibre bundle P — L
by blowing-up each fibre v, /(1) ~ R*/{+£1} with respect to the complex structure
Jp. The exceptional divisors fit into a bundle Q — L with fibres diffeomorphic
to S%, and there is a natural map P\Q — (v/(¢))\L. Using a t-invariant tubular
neighbourhood of L in N, one can resolve the orbifold N/(t) by excising a small
neighbourhood of L and gluing in a neighbourhood of ) in P so as to obtain a
compact manifold M.

In [68, Prop. 6.1], the authors prove that for any 0 < k < 7 the cohomology
group H*(M) is isomorphic to H*(N/{1)) ® H*"2(L). The proof makes use of the
important property that the normal bundle v of L is trivial [68, Rem. 2.14]. In
particular, the bundle P retracts onto Q ~ L x S? and therefore

H*(P) ~ H*(L x S?) ~ H*(L) ® H**(L).

Similarly, the gluing region of the construction, homeomorphic to (v/(t))\L, is
homotopy-equivalent to a trivial SO(3)-bundle over L, and since SO(3) ~ S3/{+1}

is a rational homology sphere it follows that
H*((v/(t)\L) =~ H*(L x SO(3)) ~ H*(L) & H"*(L).

By duality, if follows that Hy(M) =~ Hp(N/{(1)) ® Hy_o(L), Hy(P) ~ Hy(L) &
Hy o(L) and Hy((v/{t))\L) ~ Hy(L) & Hy_3(L).

Let us now prove that we are in the situation described in Lemma 4.10. First,
we claim that H3(N/(t)) ~ H3((N/{¢t))\L). It suffices to prove that the rela-
tive homology group H3(N/(t), (N/(t))\L) vanishes. By excision, it is isomorphic
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to Hs(v/(),(v/{(t))\L). Now v/(1) retracts onto L and we see that the map
H3(v/{1)) = H3((v/{t))\L) is surjective and the map Hy(v/ (1)) — Ha((v/(t))\L)
is an isomorphism. Therefore H3(N/(¢), (N/{t)\L) ~ Hs(v/{), (v/{t))\L) = 0.
In particular H3(N/(t)) has a basis of represented by cycles supported away
from L. On the other hand, we have Hy(P\Q) ~ Hy((v/())\L) ~ Hs(L) and
Hy(P) ~ Hy(L) @ Ho(L) and therefore the map Hy(P\Q) — Hs(P) is injective,
which in turn implies that the boundary map Hs(P, P\Q) — Hy(P\Q) must be
trivial. Therefore there is a basis of Hs(M) represented by 3-cycles C; supported
away from the gluing region, and if D; are cycles representing the dual basis of
H,(M) we can ensure that D; is supported in a compact region of P if Cj is.
The construction of a family of closed Ga-structures ¢, on M with sufficiently
small torsion to be perturbed to a family of nearby torsion-free Gy-structures @,
is quite involved, and we will not attempt to summarise it. Rather, we will just
point out the two facts that are relevant to us. The first one is that, as for the
generalised Kummer construction, the restriction of ¢; to the interior of (N/(t))\L
away from the gluing region coincides with the original torsion-free Go-structure
. Secondly, in a neighbourhood of ) in P the 3-form ¢; is affine in the variable
t?. Hence the path of cohomology classes [¢;] € H3(M) forms a line segment. In
the limit where ¢t — oo, (M, g;,) converges to the orbifold (N/(¢), g,), and we can
apply either Theorem 4.11 or Proposition 4.13 to deduce that this occurs at finite

distance in the moduli space. Hence we deduce:

Corollary 4.15. Let (M, @;) be a 1-parameter family of torsion-free Ga-structures
obtained from the Joyce—Karigiannis construction [68]. Then the limit t — 0 lies

at finite distance in the moduli space.

Let us now move on to the resolution of Gy-manifolds with isolated conical
singularities. This construction was carried out by Karigiannis in [72], and takes as
building blocks a singular compact Gy-manifold (N, ¢g) with isolated singularities
D1y .-, Pm asymptotic (with rates pui,..., g, > 0) to a Go-cone (C; ~ (0,00) X
¥, ¢c,)? and a finite collection of noncompact asymptotically conical Go-manifolds
(Y1,01), -+, (Y, om) asymptotic to C1, ..., C,, (with rates vy, ..., v, < —3). We
do not need to know much about the technical details of the construction, but

an important fact is that it is generally obstructed and we need to describe the

2 As of today, there are no examples of compact Go-manifolds with isolated conical singularities,
and only a handful of Gs-cones. Hence this construction does not produce new examples of
compact Go-manifolds yet. However, it is generally expected that compact conically singular
Go-manifolds should exist in large numbers.
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obstructions in order to understand the topological aspects of the construction and
compute the path of cohomology classes.
In a nutshell, each singularity p; has a pointed neighbourhood diffeomorphic
to (0,€) x ¥; where ¢ reads
Yo = @c, + da;

where @¢, is a conical torsion-free Go-structure on the cone C; and do; = O(r#)
(r is the radial coordinate function). Likewise, the end of Y; is diffeomorphic to

(R,00) x %; and @; can be written

©i = ¢, + & +dg

where &; is a harmonic 3-form on the link 3; and ¢; a 2-form with |¢;| = O(r™?) and
|d¢i| = O(r=*). Note that for the cone metric we have |&;| = O(r™3). In addition,
the leading order term of d(; can be written —v;/r for some harmonic 2-form v;
on o;, so that d¢; = r—2dr A v;. Let us write n; the dual 4-form of v; on X;.

From this we see that in order to interpolate between ¢, and ¢;, one needs a
harmonic 3-form & on N asymptotic to &; near each singular point p;. This gives
a first obstruction which can be shown to be topological using weighted Hodge
theory (see [72, Th. 3.10]): the obstruction vanishes if and only if the tuple of
cohomology classes ([1], ..., [En]) € @i H?(X;) lies in the image of H3(N'), where
N’ is the compact manifold with boundary obtained by replacing each p; with
a boundary component homeomorphic to ;. There is also a second topological
obstruction coming from the interpolation of the dual 4-forms: namely, in order
to do the construction one needs to assume that the tuple of cohomology classes
([m)s- - [9m]) € ®:H*(X;) lies in the image of H*(N’) in the long exact sequence
of the pair (N',11;X%;).

Remark 4.16. The harmonic form &; necessarily vanishes if v; < —3, and so does
n; if v; < —4. Hence the obstructions only occur if the AC manifolds Y; have a
(relatively) slow convergence rate to their asymptotic cone. One cannot hope that
the convergence could be faster in general since the three asymptotically conical

Bryant-Salamon manifolds have convergence rate —3 or —4 [75].

Assuming that the first obstruction vanishes, then one may find a harmonic
3-form on N such that £ = & + dA; on (0,€) x X; near p;, where dA; decays
faster than O(r~3). Let us then define, for some small ¢ > 0, the closed Go-
structures po; = @o + t3¢ on N and Vit = t3¢, on Y;. Then ©o,+ is equal to
wo, 3¢+ d(a;+13A;) on (0,€) x X5, and ¢ = 2o, +136+d(t3¢) on (R, 00) X 3.

In particular, the domain (R, t€) x 3; of Y; is almost isometric to the domain
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(tR,€) of N, and we can form a compact manifold M; by identifying the two regions
in order to resolve each conical singularity p; by gluing in a rescaled copy of Y;.
Clearly, all the compact manifolds M, are diffeomorphic to some fixed manifold
M. Moreover M, is endowed with a closed Gg-structure ¢, which is equal to ¢
away from the singularities in the bulk of IV, to ¢;; away from the ends in the
bulk of Y;, and to

oo, + 128 + d(xi (o + P A) + (1 — x)PTFG) (4.14)

in the gluing region (tR,€) x X. In this expression, T; is the homothety of factor
t~1 of the cone and y; is a cutoff function® of r equal to 0 if r < tR and 1 if r > e.
Note that T} ¢; = t3pc, and T;&; = & which explains why T} only acts on ;.
Using Joyce’s theorem, Karigiannis proved that provided the second obstruc-
tion also vanishes, then for ¢ small enough ¢, can be perturbed to a nearby torsion-
free Go-structure ¢, within the same cohomology class. Thus we obtain a contin-
uous l-parameter family of torsion-free Go-structures on M, which can be shown
to converge to the original conically singular manifold (N, ) in the Gromov-
Hausdorff sense as t — 0. In particular, there is a definite volume lower bound,
and moreover for any 0 < k < 7 it is easy to construct a basis of Hy(M) repre-
sented by cycles whose volume is uniformly bounded (in a moment we will do it
for k = 3). In turns out that the path of cohomology classes [@;] = [¢:] € H*(M)

is an affine function of the variable 3, and therefore:

Corollary 4.17. Let (M, @;) be the 1-parameter family of torsion-free Go-structures
constructed by resolving a compact Go-manifold with isolated conical singularities

as in [72]. Then the limit t — 0 lies at finite distance in the moduli space.

Let us justify our claim about the path of cohomology classes. If suffices to
prove that there is a basis of homology classes [C;] € H3(M) such that [ic )¢ =
a; + t3b; for some a;,b; € R. Now there are two sources of nontrivial homology
classes in H3(M). The first source comes from the cycles supported away from
the gluing region, for which the claim is obvious. Those cycles represent the
image of H3(U;) & (®;H3(Yi:)) — Hs(M) in the exact sequence, where U; is
obtained from N by excising the neighbourhood (0,¢R) x X; of each singularity
and Y;, is obtained from Y; by excising the end (t7'€,00) x ;. A complement
of this image is spanned by cycles which can be constructed as follows. Let B;
be a collection of 2-cycles in ¥; such that [B;] € Hy(X;) lies in the image of the

3For the analysis it is important to make a good choice of cutoff function, but this does not affect
the cohomology class of @, since a different choice would only add a globally exact form.
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boundary map §; : H3(Y;,%;) — Ho(X2) and &;[B;] belongs to the image the
map H3(U.) — @®;H»(%;). Then there is a 3-cycle C supported in U, such that
0Cy = —(By+- -+ By,) x {€} and for each i there is a 3-cycle C; in Y g such that
0C; = B;x{R}. In the gluing region (t 7' R, €) x3; we consider C' = @®;B; x [t ' R, €]
(appropriately subdivided into 3-simplices), and adding them all we obtain a cycle
C=Co+Ci+...+4Cp,+C"in M.

Let us now calculate [ ¢,. Clearly each term ij Y = fcj ;¢ is an affine
function of 3 for 0 < j < m, so the only thing that requires some care is the
computation of [, ;. In the gluing region (tR,€) x X;, ¢ is given by (4.14). The
integral [ & vanishes since §; is a 3-form on ¥; and therefore 0,.¢;, = 0. On the
other hand, the conical torsion-free Go-structure can be written ¢¢, = d(r3w;) for

some 2-form on ¥; [72, Prop. 2.4] and hence Stockes’ theorem yields

m

3 ,3p3 3 3
=Y (¢ - R / wﬁ/ sz‘“/ A - G
c ()Ot ( ) [Bz] B7;><{€} BiX{f} BZX{R} g

i=1

which is again manifestly an affine function of the variable 3. It is interesting to
note that we are again in the situation where the path of cohomology classes forms
a line segment in H3(M).

Let us make a few comments on the general method of resolution of flat Go-
orbifolds 77 /T described in [66, Ch. 11], which we will not attempt to treat in de-
tail. The idea is to resolve the singularities by gluing in various rescaled manifolds
with appropriate asymptotics (coined QALE Gg-manifolds in the monograph).
Describing the topology of these resolutions would be fastidious in general since
various components of the singular set might intersect, but since we are rescaling
the QALE manifolds by powers of a gluing parameter seems possible that one could
obtain polynomial bounds for the derivatives of the path of cohomology classes of
the glued Ga-structure (by choosing an appropriate parametrisation, if necessary).
In the same way, we can always construct a collection of cycles representing a basis
of the homology of M by patching up various cycles on each piece of the construc-
tion, and these will have uniformly bounded volume. Hence we would expect that
these more complicated resolutions of T7/T" also yield finite-distance degenerate
limits in the moduli space, although one would need to write things more carefully

in order to properly justify it.

4.3.3 Follow-up questions. Let us finish this chapter with a few remarks and
open questions. An interesting problem would be to give sufficient conditions for
the limit of a path (or a sequence) in the moduli space to be at infinite distance.

Since this is always the case when the volume diverges to 0 or oo, we need to fix
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the volume for this question to be interesting. In the case of twisted connected
sums for instance, the volume grows linearly with the length of the neck region
and therefore this represents an infinite-distance limit in the moduli space — even
though we could deduce from Proposition 4.8 that the energy of the obvious path
is bounded. However, if we normalise the volume it is no longer clear that the
distance is unbounded. The main challenge is that in order to find a lower bound
on the distance between two points in the moduli space, we need to control the
length of all paths connecting them, whereas the length of one particular path is
enough to give an upper bound. It is nevertheless interesting to remark that the
length of the volume-normalised neck-stretching path is indeed infinite.

Let us briefly sketch the argument. First, let us recall the notations of Section
2.2: we consider a twisted connected sum of two asymptotically cylindrical Gg-
manifolds (77, ¢1) and (Zs,¢y), resulting in a compact manifold My endowed
with a glued Ga-structure @7, which can be deformed to a nearby torsion-free Gs-
structure @ for T large enough, with ||@r — ¢r||cr = O(e™°T) as T — oo (for any
k > 0 and small enough § > 0). Moreover, [¢7] = [¢p7r] € H*(Mr), and with the
estimates of Proposition 2.16 we can well approximate the harmonic forms with
respect to gz by the harmonic forms with respect to g,,., which themselves can
be approximated by matching pairs of harmonic forms as in §3.4.1.

The matching Go-structures ¢; are asymptotic to Re(§2) + dt A w, where (w, §2)
is a torsion-free SU(3)-structure on the common cross-section X of Z;. Moreover,
using the decomposition of the space of bounded harmonic forms described in
§3.4.1, there is a unique exact harmonic form 7; on Z; asymptotic to dt A w on
each Z;. By [95, Prop. 3.2], we have Z[pr] = 26([w]) in H3(My), where [w] €
H?(X) and the map 0 : H*(X) — H3(Myr) comes from the Mayer-Vietoris exact
sequence associated with the gluing. Moreover, the class 6([w]) € H*(Mr) can
be represented by the closed form nr/T € Q*(My), where 57 is the approximate
harmonic form obtained from the matching pair 7y, 7, as in §3.4.1 (this can be
deduced from the proof of [95, Prop. 3.2]).

Let .# be the moduli space of torsion-free Ga-structures on M = M. Since
the metric ¢ splits a line in the volume direction (Lemma 4.1), the length of

the volume-normalised path induced by {@r/ Vol(pr)¥ " }rem ) C A is equal

to [r; \/ 5, (mar ($7), o7 (P7))dt. As T — oo, the harmonic form o7 (@) can be
approximated by

2 2 2
T = TUT - ﬁ(ﬁﬂ 90T><pT90T = T(UT - f@T)
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where f = (97, p7), /7. In the neck region, f ~ c is almost a constant, and hence
2
nr ~ T((l —c)dt Nw — cRe(9))

in the neck region, whence in this region

(I —c)ldt Awl2, + | Re(Q)2, N c
T2 T2

|77T@T ~

where C' > 0 is a non-trivial constant. Since the length of the neck region and the
volume of o7 both grow linearly with 7', it follows that

!/

Vs, e (Gr) 7an () = o+ 0(1/T)

as T — oo, for some other non-trivial constant C’ > 0. Hence we deduce:

Lemma 4.18. The volume-normalised path {@r/Vol(¢r)* "} 1y.00 C A has infi-
nite length with respect to the metric 4. More precisely, the length of the path
grows logarithmically with T .

Remark 4.19. The fact that the speed of the path is proportional to % is consistent
with the fact that this path has bounded energy, even though the length diverges.

Remark 4.20. From the physics perspective, the logarithmic behaviour of the length
of the path would be in line with the conjectures mentioned in the introduction.
Indeed, if this path turned out to be close to distance-minimising, it would mean
that the parameter T is roughly some power of the exponential of the moduli space
distance, and by the spectral estimates of the previous chapter this means that
the eigenvalues of the Laplacian decay exponentially with the distance. This is

precisely what the swampland distance conjecture predicts.

Coming back to the general case, perhaps (if we assume that the volume is nor-
malised) one could argue that the diameter remains bounded on bounded subsets
of the moduli space; that is, finite-distance limits are noncollapsed. This probably
has more to do with Ricci-flatness than Gy holonomy, and might hold more gen-
erally for manifolds with holonomy SU(m) and Spin(7). Note that it is true for
hyperkahler K3 surfaces (holonomy SU(2)) and that this does not seem to contra-

dict the known results about finite-distance limits in Calabi-Yau moduli spaces®.

4Remark that the Calabi-Yau case seems to indicate that the converse statement is unlikely to
hold, that is, not all noncollapsed limits are at finite distance in the moduli space. Indeed, the
result of Wang [117] states that one-parameter degenerations of polarised projective Calabi-Yau
manifolds which occur at finite-distance correspond to varieties with canonical singularities,
whilst Donaldson—Sun proved that in general non-collapsed limits of projective Calabi—Yau
manifolds have log terminal singularities [38, §4].
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In the case of Go, all the degenerations of compact manifolds with Gy-holonomy
which we proved to occur at finite distance in this chapter are noncollapsed. But
to the author’s knowledge there is no general statement of this sort®.

If this turned out to be true, one could even fantasize about studying the
completion of the moduli spaces (in the sense of the completion with respect to the
distance associated with ¢). Indeed, if any bounded sequence in the moduli space
has bounded diameter, then (if the volume is normalised) Bishop—Gromov volume
monotonicity implies that the sequence is noncollapsed, and the theory developed
by Cheeger and Colding [23] implies that a subsequence must converge in the
Gromov—Hausdorff sense to a compact, singular space isometric to the completion
of an open Ricci-flat manifold. In fact the limit is a singular space with holonomy
contained in Gy (or whichever Ricci-flat holonomy group we started with) [25].
If the sequence we started with is in fact Cauchy, maybe one could hope that it
actually converges (and not just subconverges) in the Gromov—Hausdorff sense.
But even assuming that we can prove appropriate diameter bounds this would be
far from obvious because the moduli space distance is a priori much weaker than

the Gromov—Hausdorfl distance.

SThere is a statement along those lines in [7, Th. II], which concerns the case of Ricci-flat
4-manifolds (not necessarily hyperkéhler) although the article claims that it would be straight-
forward to adapt it to all dimensions. Unfortunately, the proof appears to be erroneous (even
in dimension 4). At first I thought that there might be an easy fix for it and spent some time
trying to find one, but now I tend to believe that the argument cannot be saved.
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Chapter 5

A period mapping

The material presented in this chapter originally grew out of an attempt to better
understand the curvature of the metric ¢4 on Go-moduli spaces. 1 was interested
in knowing if it had any special properties or if there would be some universal
bounds, in relation with certain conjectures in Kéhler geometry [121] and the
swampland distance conjectures in physics [98]. Since the metric ¢ is Hessian,
these properties are determined by the derivatives of the potential .%, which are
quite difficult to understand due to the high degree of nonlinearity of this function.
The third-order derivative is also of particular interest in physics: it determines
a symmetric cubic form called the Yukawa coupling, by analogy with the Yukawa
coupling of Calabi-Yau moduli spaces which plays an important role in mirror
symmetry [116].

Up to order 3, one may obtain compact formulas for the derivatives, but this
becomes substantially more difficult at higher order. At order 4, the author man-
aged to obtain a formula depending on the lower order derivatives together with
some ‘extra terms’ depending on the Green’s function of the Laplacian. Unfortu-
nately, we could not find a way to compute or estimate these terms and go further
in our understanding of the metric ¢ using only local coordinate computations',
except in some easy cases described in Chapter 6.

This difficulty motivated us to introduce a new perspective on the geome-
try of Go-moduli spaces. For this we drew inspiration from the notion of Weil—-
Petersson geometry developed by Lu and Sun [90, 91] which axiomatises the ge-
ometric properties of Calabi—Yau moduli spaces, relying on the theory of period
maps introduced by Griffiths. Our starting observation is that by ‘twisting’ the
Hodge decomposition of a compact Go-manifold M, we can define a natural im-

mersion of the moduli space .Z into a homogeneous space ® diffeomorphic to

L Although we are aware of ongoing work in this direction by Karigiannis and Loftin [74], whom
we thank for pointing it out.
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GL(b¥¥(M))/({£1} x O(b*(M) — 1)), which satisfies properties analogous to Grif-
fiths’ transversality and naturally determines the metric ¢.

The chapter is organised as follows. In Section 5.1, we compute the derivatives
of the potential .# and present a few geometric consequences of our formulas.
Then in Section 5.2 we introduce the period domain ® and explain how to define
a natural immersion ® : .#Z — ®. The geometric properties of this immersion and
its relation to the metric ¢ are studied in Section 5.3, where we also prove that
O(A) C D is a totally geodesic immersion if and only if the Yukawa coupling is
parallel with respect to the Levi-Civita connection of ¢. The material of these
first three sections are from the article [83] by the author. In Section 5.4, we make
some further comments (which do not appear in detail in the paper) and explain
how to relate this immersion to the more classical notion of Go-period map as a
Lagrangian immersion of .# into H3(M) & H*(M).

5.1 Higher derivatives of the potential

In this section as in the rest of the chapter, M7 will be a compact manifold ad-
mitting torsion-free Go-structures, and we assume that b'(M) = 0. Recall from
the previous chapter that the natural map .# — H?3(M) endows .# with the
structure of an affine manifold, and if (uo,...,u,) is a basis of H*(M) we have
associated local affine coordinates (z°;...,2") on .#, where n = b*(M) — 1. In
these coordinates, the Riemannian metric ¢ is the Hessian of the potential func-
tion .# () = —3log Vol(p). We denote by #,, Zu, etc. the partial derivatives of

', the expression of the first two derivatives was given in Proposition 4.2.
Remark 5.1. For later purpose, we note a couple of useful identities:
k _ kg _ a kg _
G = 2" Fop = —%,, and x"F, = —T.

They just follow from the fact that z* are by definition the coordinates of the
cohomology class [p] € H3(M) and

1
Yo 1) = W /(%%MW = —F,

dpF (p) = —VOIIW) /90 NO(p) = —T.

In this section, we present a new derivation of the derivatives of the potential
% up to order 4, and deduce a few consequences for the geometry of the moduli
space. As a key part of our computations, we first we study in §5.1.1 the infinites-

imal deformations of harmonic forms along a family of Riemannian metrics. The

130



derivations of the third and fourth derivatives of the potential are carried out in
§5.1.2. In §5.1.3 we relate them to the curvature of ¢.

5.1.1 Deformations of harmonic forms along a family of metrics. In this

part, we let (M7, g) be an oriented compact Riemannian 7-manifold and h €

End(T'M) be a trace-free endomorphism, self-adjoint for the metric g. Moreover,
0

% =0 = 2g(h’7 )

For all |[t| < €, we denote by h; the unique g;-self-adjoint endomorphism of T'M

let {g:}1e(—e,c) be a smooth family of metrics such that gy = g and

such that % = 2g;(hy-, ). In particular, hy = h, but we do not require h; to be
trace-free with respect to g; for ¢t # 0. We also denote by * the Hodge operator
associated with g, and by d* and A = (dd* + d*d) the corresponding operators;
similarly for t € (—¢, €) we denote by *;, d** and A, the operators associated with g;.
We want to understand the infinitesimal variations of the harmonic representative
of a fixed cohomology class along the path {g;}ic(—ce). We start by describing the

deformations of the operator d*¢.

Lemma 5.2. If n € Q¥(M) is a k-form, we have

od*tn
ot

=2h - (d*n) —2d*(h-n).

t=0

Proof. By definition, d*'n = (—1)% ; d ;. Using Lemma 1.3, we know that

0%,

o n=n"h-(n)—x(h-n)=2h-(xn)=—-2x%(h-n)

t=0

where the last two inequalities follow from Corollary 1.4, since h is trace-free and

self-adjoint for the metric g. The lemma follows. O

Lemma 5.3. Let {1 }ic(—ce) be a smooth family of k-forms on M, such that n, is
harmonic for the metric g, for all |t| < €, and let n = ny. Then we have:

oy
il —9dd*(h - n).
h = 2dd(h )

t=0

A

Proof. The k-form 7, is closed for all ¢t € (—¢,¢€), and thus if we differentiate the
equality
(d*d+dd")n, =0

with respect to ¢t we obtain

od*t 87715
d—— A—
Nt + Q¢ ot

5 = 0.
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At t = 0, hy = h is trace-free, ny = n satisfies d*n = 0, and thus the previous
lemma yields

od*t
ot

n=2h-(d'n)—2d"(h-n) = —=2d*(h-n).

t=0
From this it follows that

8771:
—2dd*(h - A — =
(h-n)+ ot |, 0

which proves our claim. O

In the next part we will need the following consequence of the previous lemmas:

Corollary 5.4. Let n be harmonic k-form with respect to the metric g. Fort €
(—¢,€), we denote by n; the harmonic representative of [n] € H*(M) for the metric
g and by v; the harmonic representative of the cohomology class [xn] € H™*(M).

Then the decomposition of h -n into harmonic, exact and co-exact parts reads:

_ 1 ony
h-n=#(h n>+28t

L, o
e 2 Ot

t=0

Proof. By the previous lemma, h - n satisfies the equation

ony
A — = 2dd"(h - n).
ot |, (h - n)
Moreover, as 7; represents a fixed cohomology class, the k-forms % are exact.
Therefore, the exact part of h -7 is % % o

The co-exact part of h -1 can be deduced by symmetry. Indeed, as x> =

(—1)*7=F) = 1 on k-forms, the co-exact part of h -7 is the Hodge dual of the exact
part of x(h - n). As h is trace-free, Corollary 1.4 implies that *(h-n) = —h - (xn).
Using the above characterisation of the exact part, we deduce that the exact part

of h- (xn) is precisely & 2 .- Thus the co-exact part of h-nis —5* %

2 ot

t=0

5.1.2 The third and fourth derivatives. In this part, M is a compact ori-
ented 7-manifold with b'(M) = 0 admitting torsion-free Go-structures, and we
aim to compute the third and fourth derivative of the potential .%#. Using a ba-
Sis g, . .., U, of H3 (M), n = b3, (M) = b*(M) — 1, we define affine coordinates
r = (2%...,2") on #. If p is a torsion-free Go-structures on M, we denote
by 1, € Q*(M) the unique g,-harmonic representative of the cohomology class
u, € H3(M), and by h, € C*(End(TM)) the unique endomorphism orthogonal
to Q2,(M) such that h, - ¢ = 1,. Since b'(M) = 0, the 3-form 7, has no Q3-

component, and thus h, is self-adjoint with respect to the metric g,. Similarly,
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if {¢.} is a local section of the moduli space, we denote by 7, € Q*(M) and by
ha. € C(End(T'M)) the tensors associated with ;.
Various formulas for the third derivative of the potential have already appeared

in the literature [52, 51, 73, 85]. Here we give an independent derivation:

Proposition 5.5. Let ¢ be a torsion-free Gao-structure on M. Then the third

derivative of the potential satisfies:

2
Fabe(pD) = _VOI(QD) /(hc : 77@77717><p,“<ﬂ'
Proof. Let x = (2°,...,2") be local affine coordinates on .#, let xy be the coor-

dinates of ¢, and let {¢,} be a local adapted section of the moduli space through
¢ (see §4.1.2). Differentiating the identity

1

ﬂab(gpw-@) = W /<77a,za 7]b,x><pm,u<pr

and using Lemma 4.5 from the previous chapter, we obtain at = = z:

1 0
Fael99) = v3= [ 5

~ Vol(p)J 0z° (1, o)t

1 MNax
* Vol(p) /< Oxe | _.

0 a,r 0 x :
The 3-forms gx’c and gxb’c are exact since 7, , and 7, , represent constant cohomol-

ogy classes, and therefore the second and third terms above vanish. On the other

8301 :nC:hC'SD'
0

c
0z | =g,

Thus we can compute the first term using Lemma 1.6 and the fact that h. is

Doty

T=x0

1 anb,m
0 M) pb + Vol(g) /<77a7 D

hand, as the section {p,} is adapted at © = zo, we have

self-adjoint with respect to g.:

2

7/ (hememd el ity = = [ eonemon

~ Vol(p)

gabC(w‘@) =

at x = xg. ]

We now proceed with the derivation of the fourth derivative. As a first step,
we prove a formula which depends on a particular choice of local section of the

moduli space:

Proposition 5.6. Let ¢ be a torsion-free Go-structure, let {¢.} be a local adapted
section of the moduli space through ¢ and denote by x = xy the coordinates of 2.
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Then the fourth derivative of the potential satisfies:

2 OMNaz

Fuea@?) = iy [ = GEF| e
T=x0
2 anbm
hg-my — . he - Ny
+Vol(g0) /< d " b Oud ac:xo, n >¢Mso
2 OMe.
hq - c 7 aha : .
+V01(g0) /< d 77 axd s nb>¥71u“90

Proof. To lighten notations, we will keep the x-dependence implicit and write 7,
and h, instead of 7n,, and h,, when this does not create any confusion. Also,
unless otherwise noted we differentiate at * = xy. By the previous proposition,

the third derivative of the potential can be written:

1 1

ffabc(%@) = _W /(hc : Ua,nb>soxﬂsox - W /<77a, h - T]b)(Pa:lu(Pa:'

Differentiating with respect to ¢ at & = 7 and using Lemma 4.5 we obtain:

1 09, 1 0g,,

or — . — .
1 8771)’1 1 877(1,:1:
Vol(y) /<hc fla> "5z et Vol(y) /< Ox? e et

1 (")n(w 1 anb,m
= o) /e i hette = gy [ e o

B 1 / <8hw > B 1 / ( Ohe >
VOI(QD) Oxd Nas Mb) ol VOI(QD) Na, O M)l

(5.1)

Since the section {¢,} is adapted, at x = xy we have %ﬁ% = ng = hg - p and by

Lemma 1.6 we have the identities:

ag(ﬁz

99y,
- (hc *Na, 77b> = _2<hc *Nas h - 77b>z,07 Ol (7]&’ he - nb) = _2<hd * Na, he - 77b><p'

oz

Moreover, since the section h. of End(7T'M) is self-adjoint for the metric induced
e

by ¢, the second and third lines in (5.1) are equal. These observations yield:

2 Moz
Faredl09) = Vol(gp)/md o = g e M)ty
2 anb,x
Vol(p) / (ha 1 = —5 0 e - Moty (5.2)
1 Ohe Ohey
_VOI((,D) /< Oxd *Na, 77b>go + <77a, W . 77b><p,u<p-
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It remains to show that the last line in (5.2) can be put in a form similar to the first

two lines. Decomposmg 8

-self-adjoint and g,-anti-self-adjoint parts, we

can further write:

Ohe.o O Ohep  (Ohoo\'
<a naanb> +<77a7 Ol '77b>g0 :< O + O 'navnb>¥’

Ohey  [Ohes\'®
= <( Oxd + < axd> ) '@’ha'nb>sﬂ

Ohe z

T
s ) ? denotes the

with respect to the metric g,. Taking the self-adjoint part of a

where the second equality follows from Corollary 1.5 and (

c

O d
section h of End(T'M) corresponds to projecting h-p onto the Q3®)3.-components,

adjoint of 2

and hence we obtain:

ahcx ahcx ahc:z:
<8 “Nas M) + (Mas 5 Ozd nb>tp = 2( O -0, Tig2r(ha 77b)>

Differentiating the relation h. - ¢, = e at © = xy gives 8xd CPp = 8(,;7;;1” —heng

and thus:

Ohe e
2< Ozd 2 7Tlea27(h 77b)> 2<hc “Td — %7’”1@27(}% : 77b)>¢

Me,w
—2(hg - e — Dl T1w27(Pa - 1))

where the second equality also holds because this expression is invariant under

8‘;‘51)
i)

vanishes. This component can be singled out by wedging with ¢. On the one hand,

permutation of h. and hy. It remains to prove that the component 77(hg-1.—

we have:
(ha ne) Ao =ha-(ne A @) =ncA(ha- ) =—nc A
as 1. A\ ¢ = 0 since m7(n.) = 0. On the other hand, at z = zy we can write

ONe 8%

0
Ozl Ny = @(ncw A pr)

= T A Nd (53)

since g“oi = 14 at * = x9. Therefore m7(hg - 1. —

1) = 0. Putting everything
together this implies that, at x = z:

s Ol OMe e
(opd s o)+ (ay - o) = =2(ha 0 = —5 - ha - 1).p

which yields the claimed expression for Fgpa(p2). O

The above expression for %, is unsatisfactory, as it involves choosing an
adapted section at a point of .Z. In order to rewrite it in a more intrinsic way, we
need to decompose the 3-forms hy - 14, hq - m, and hy - 1. using the results of the

previous section:
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Lemma 5.7. With the notations of the previous proposition, the decomposition of

hq - ne into harmonic, exact and co-exact parts reads:

1 ov,
— — %
2 % Oxd

T=x0

one

1
hd.nC:%(hd.nc)_‘_iaxd

T=x0

where v, is the harmonic representative of the cohomology class [x,n.) € H*(M)

for the metric induced by ¢..

Proof. After applying a linear change of coordinates if necessary, we may assume
that at * = x9 the harmonic form 7y is proportional to ¢ and ny,...,n, are
in #53(M, ). Thus if d = 0, hy € C*(End(T'M)) is a constant multiple of the
identity, and therefore h;-7. is harmonic. Moreover, variations of ¢ in the direction
1o correspond to scaling the Ga-structure, and the harmonic representatives of a
fixed cohomology class are constant under scaling of the metric. Therefore the
proposition holds if d = 0. On the other hand, if d = 1,...,n then the result
follows from Corollary 5.4. [

As a consequence of this lemma, we can write with the notations of Proposition

5.6
OMNe.»

W = %(hd . ’f]c) + GA((d*d - dd*)(hd : nc))

hd"r]c_

T=x0
where Ga denotes the Green’s function of the Laplacian (acting on the orthogonal
component of the space of harmonic forms) associated with g,. Moreover, we can

use Proposition 5.5 to decompose the harmonic 3-form .52 (hy - n.) in the basis

Tove -+ T as:
kl 1
H(ha-ne) = Vol(p) /(hd s M) ol - T = —5%“3‘1&771
and thus
2 [ 1), A o ity = S P P
Vol(y) 2

Therefore, we obtain a formula which does not depend on any choice of local

section:

Theorem 5.8. The fourth derivative of the potential is given by
1
Fabed = 554“ (FavkZeal + FackFvdi + Fadk-Foct) + Eabed + cabd + Echad

where for any torsion-free Go-structure ¢ on M we have

2

Fud#9) = Gy [ (Gal(d@'d = A m0) oo
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Remark 5.9. Said in words, the integral [(Ga((d*d —dd*)hg-nc), ha - M) otb, is the
L?-inner product of the co-exact parts of h, - m, and hy - 7. minus the L?-inner
product of the exact parts of h, - 1, and hg - 1.. Hence the term &,.q vanishes

exactly when these inner products are equal.

Remark 5.10. Since the operator G a (d*d—dd*) is self-adjoint we have & peq = Eucha-
A slightly less obvious symmetry is the fact that &,pcq = haca, which we can prove
in two ways. The first comes from the symmetry of the partial derivatives of %,
which implies that &,peq + Erapa + Eepaa is fully symmetric in its indices. The sum
of the last two terms is symmetric under permutations of a and b, and hence the
first term &, must be symmetric in the indices a and b. As a sanity check, we
can also recover this symmetry property from the expression given in Theorem
5.8. Indeed we can deduce from Lemma 1.2 the expression

2

(g]abcd - (g})acd = W

[(Gal(@d—dd Vg ne), (o, ha] - ) oty

Now [hy, h,] is anti-self-adjoint for the metric g, and hence the 3-form [h,, hy)] is of
type Q3. In particular, it is orthogonal to the space of harmonic 3-forms, and hence
Lemma 5.7 implies that if we choose a section ¢, of the moduli space adapted at

r = xg we have

2 0 ¢,z
gabcd(l'O) - gbacd(l'[)) N /<hd *Ne — Tl

Vol(i) zd [Py hal - @) ot

T=x0

In the proof of Proposition 5.6, we showed that m;(hg - 1. — 857;;5”

) = 0 which
=xo
means that the expression under the integral vanishes identically for type reasons.

Hence we recover the fact that &,pcq = Shaca-
Besides the above symmetries (and the ones we can deduce from them), there is
no reason to think that &;.4 is fully symmetric in its indices; only the combination

of the terms &,peq + Eravd + Evvad 1S

5.1.3 Yukawa coupling and curvatures. In this part, we want to interpret the
expressions of the third and fourth derivatives of the potential in geometric terms
and relate them to the curvatures of the moduli spaces. As in the previous chapter,
let us denote by D the flat connection coming from the local diffeomorphism
7. M — H3(M) and V¥ the Levi-Civita of the metric ¢. Then there is a unique
matrix-valued 1-form v on .Z, called the difference tensor of the Hessian structure
(D,4), such that V¥ = D + ~. In local affine coordinates z = (2,...,2"), the
difference tensor can be written as

a 0
Y= F’;bd:r; diL‘b & @
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where T'%, are the Christoffel symbols of the metric ¢ [106]. As the metric is the

Hessian of .# in affine coordinates, the Christoffel symbols read:
N P
Loy = §g¢ Fab.- (5.4)
In particular, the difference tensor « is dual to the symmetric cubic form
o 1 aj..b j..c
== iffabcdm dx’dx”.

The cubic form = is often called the Yukawa coupling of .# [52, 73, 85]. The

covariant derivative of the Yukawa coupling is given by:

G = = k= k= k=
vd Zabe = acl\:abc - Fda:kbc - de:akc - ch:abk

1 1 Kl (g g a . a a . a (5'5)
= icgzabcd - Zg (FavkZ car + Fack Foa + Fadk-Foel) -
Hence, Theorem 5.8 implies that:
1
vgEabc = §(<’7@abcd + éacabd + (gacbad)- (56)

Therefore, &upeqd + Eeava + Ewvaa = 0 at a point for any a,b,c,d if and only if
the covariant derivative (with respect to the Levi-Civita connection of ¢) of the
Yukawa coupling =, or equivalently of the difference tensor v, vanishes at this
point. For later use, we gather a few properties of the Yukawa coupling and its

covariant derivative:
Lemma 5.11. The Yukawa coupling satisfies the following properties:

(i) Under the identification M ~R X My of 4.1.1, Z = —dt G + =, where =,

is the restriction of = to .#.
(ii) In local affine coordinates, T* F oy = —2G,.
(iii) VY= is a fully symmetric quartic form on T.# .
(iv) In local affine coordinates, x*V¥ =y = 0.

Proof. Properties (i) and (ii) are essentially equivalent since Z 5. = 2Z4.. More-
over (ii) can be seen from the observation that z* are the coordinates of the
cohomology class [¢] € H3(M), and thus

2
Vol(p)

k 2

x ﬁabk = _VOI((,O) /<ha “ Mo, 90><PMSO =

[ mons = =24

using the symmetry of h, and the fact that h, - ¢ = n, by definition.
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For point (iii), the symmetry of V¥Z follows from the symmetry of the partial
derivatives of .# and (5.5). Finally, because point (iv) will be a key argument in
the next section (in the proof of Theorem 5.22), we shall give it two proofs.

The first proof follows from the observation that
2" Eppea = " Eukea = " Enpa = 7" Epper, = 0 (5.7)
for any a, b, c,d. Indeed, from the expression given in Theorem 5.8, we have
#Ginea = [(Gal(d"d = dd"Yha - me), (P 1) ot

Notice that x*hy, is a self-adjoint endomorphism of TM for the metric g,, and
moreover z¥hy, - ¢ = 2¥n, = . It follows that z¥h;, = %Id. Hence z%hy, -y =
%Id Ny = 1 is harmonic, whence it is L?-orthogonal to Ga((d*d — dd*)hg - 1.) and
therefore 2%&;.q = 0. The other identities of (5.7) are proved in the same way,
since 2%h, - M) = hg - @ = N4, %hg - mi, = ng and 2Fhy, - n. = 1, are all harmonic
forms. Since a, b, ¢,d are arbitrary point (iv) now follows from (5.6).

We can also give point (iv) a second proof which does not rely on the particular
expression of the terms &4 given in Theorem 5.8 but only on the properties of the
potential .Z. The idea is to differentiate the expression of point (ii) with respect
to the variable z¢, which yields the identity 2*.Z ook + Fape = —2-Fape, that is:

[Ekﬁabck = _Byabc- (58)

On the other hand, using (5.5) we have

— 1 1
xkvf:bck = §Ikyabck - Zgrs (ﬁabr : xkycks + <91107“ : l‘kﬂbks + xkﬁakr : ﬂbcs)

and using point (ii) again we see that
GG Py = —297°G.g = =267, G 2" Fyps = 204, G2 Ty = =207
Substituting this into the previous expression, we obtain
2"V ek = ;(xkyabck + 3Fape) =0
because of (5.8). O

It is interesting to relate the previous observations to the curvature of ¢. By

convention, we define the Riemann curvature tensor of ¢4 as

g O

0 0 d a 0 R wid 0 G 7Y
z@ < ) — e% bed Vacv - v(adVaC@'

9z 0zl ) Dzt 9zt Oa b
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Lowering the first index, we also denote
t%(JLl)cd = gak%kbcd-

For Hessian metrics, the Riemann curvature tensor has a particularly simple ex-

pression [106, Prop. 2.3]:
R _lgklf T a g —@gklz = gkl = 59
abed = 7 (FadeF el — FackFbar) = 9" EadkZne Zack=bdl - (5.9)
Since the Yukawa coupling determines the curvature, we deduce the following:

Proposition 5.12. If &peq + Erabad + Evpaa = 0 for any 0 < a,b,c,d < n at a point
of the moduli space, then the covariant derivative of % vanishes at this point. In
particular, if Ewea + Evava + Eepaqa vVanishes identically on the moduli space, then

(A, 9) is locally symmetric.

In the next chapter, we will see that this condition is satisfied in certain simple
cases, e.g. when M = T7/T or M = (T® x K3)/T. Hence for these very simple
examples the moduli spaces are locally symmetric, a fact which can be easily
proved independently and constitutes a good sanity check for the results which we
derived in this section.

Beyond these cases, there is no reason to think that the Yukawa coupling
will be a parallel tensor, because the constraints it imposes on ¢ are too strong.
Therefore, much of the difficulty in further analysing the geometric properties of
the moduli spaces lies in the fact that the terms &4 cannot be computed more
explicitly in local coordinates. In the next sections of this chapter, we will propose
a more geometric interpretation for the presence of these terms, and in §5.3.3 we
prove a stronger version of Proposition 5.12 which shows that if they vanish then

the sectional curvature of ¢ is nonpositive.

5.2 Period domains

In the remainder of this chapter, we shall introduce an immersion ® of the moduli
space . into the homogeneous space GL(n+1)/({£1}xO(n)), study its properties
and relate it to the metric ¢. The idea is inspired by the period map introduced
by Griffiths on Calabi—Yau moduli spaces [49, 50|, and the related notion of Weil-
Petersson geometry of Lu and Sun [90].

By means of motivation, let us recall a few facts. If Y is a compact Calabi—Yau

threefold, the cohomology group H?(Y;C) admits a Hodge decomposition
Hg(Y, (C) _ H3,0 EB H2,1 EB H1,2 EB H0,3.
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The cup-product induces a symplectic structure @ on H?(Y;C) and the Hodge

decomposition is subject to the following conditions:

(A) Hp3» = H>PP forall p=0,1,2,3.

(B) iQ(HP37P H13-4) = 0 if p # ¢, and (—1)P*HQ(HP3~P HpP3-p) > ( for all p.
(C) dim H*° =1.

By considering the Hodge filtration F? = H3Y@® ... @ H37PP it can be shown that
the domain parametrising such decompositions (called Hodge structures of weight
(1,h*1)) is a complex homogeneous space diffeomorphic to Sp(Q)/(U(1) x U(n)),
where Sp(Q) is the group of real endomorphisms of H preserving the symplectic
form @ and n = h*!(Y). Griffiths proved that the Hodge filtration varies holomor-
phically along an analytic deformation of the complex structure of Y, and that
these variations satisfy the transversality condition dF? C FP~' [49, 50]. This
condition in particular implies that the Weil-Peterson metric can be seen as the
pull-back of a homogeneous indefinite hermitian form defined on the period domain
108, 112, 90].

The goal of the present section is to explain how to ‘twist’ the Hodge decom-
position of a Gg-manifold (M, ) in order to obtain a flag in H3*(M) & H*(M)
satisfying analogous axioms, and to describe the geometry of the corresponding

‘period domains’.

5.2.1 Some observations on the Hodge decomposition. Let (M, ) be a
compact Gy-manifold, with the usual assumption b'(M) = 0. For simplicity, we
denote H® = H3(M), H* = H*(M) and H = H?> ® H*, and n = b3,(M) =
b*(M)—1. We can define an involution ¢ = Idgs — Idgs on H. As the cup-product
identifies H* with the dual space of H®, H is endowed with a natural symplectic

form Q. Explicitly, if n, 7" are closed 3-forms and v, closed 4-forms we have

QU+ WL+ ) = [ nav' = [ nav,

Let us consider the decomposition H = H® & HP @ H{Y @ HLY defined by

HP = {[n] + [xn], n € A5 (M, )},

HP = {[n] — [x.], 1 € H55(M, )}, 510
HY = {[n] + [*,m], n € HH(M,¢)}, and

HY = {[n] — [+,n], n € H3(M,0)}.

It satisfies the following properties, analogous to (A), (B) and (C) above:
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(1) HEP = (HP)) for p=0,...,3.

(2) Q. (H(p) H( ) = 0if p # ¢, and (=1)P'Q(v (H(p) Hép)) > 0, for any
0 < p,q < 3; that is, (=1)P"Q(¢(w),w) > 0 for any w € H®\{0}.

(3) dim HYY) =1 and dim HY) =

The first and third properties are clear, and the second one follows from the fact
that if w = [n] + (=1)P " [x,n] € HP and w' = [1f] + (=1)"[+,1/] € HY then

QUw),w) = (=) + (=1 [ (n.)on

Let us denote by © C P(H)x Gr(n, H)x Gr(n, H) xP(H) the set of decompositions
H=(H® H® HY HO) of H satisfying the above properties, where Gr(n, H)
is the Grassmannian of n-planes in H. The subgroup of GL(H) of automorphisms
fixing (@, ) naturally acts on ©. This group can be identified with GL(H?) ~
GL(n+1). Explicitly, if we fix bases (uq, - .., u,) of H*> and (vy, ..., v,) of H* such
that

Q(ui,vj) =05, V0<1i,j<n (5.11)

then any matrix A € GL(n + 1) acts on H via

(u]) = ;}Azjui, A(Uj) == ;(A_l)jﬂ}i. (512)

This action has the following properties:

Lemma 5.13. There is an equivariant diffeomorphism © — P(H?) x S% (H?)*.
In particular the action of GL(H?) on ® is transitive, and D is diffeomorphic to
the homogeneous space GL(n + 1)/({£1} x O(n)).

Proof. If H € ®, we can define a line /g € P(H?) by
ty = {w + 1(w), we HY}.
There is also a quadratic form g on H? defined as
qu(u) = 2@(7T§_I)U wg) ) — 2Q(7rﬁ)u, Wg)u), Yu € H?,

where 7T(p ) denotes the projection of H onto H® in the decomposition H = H® &
H® o HY @ H©O, Properties (1) and (2) imply that gg is positive definite on H?,
and thus gg € S7(H?)*. This way we have defined a map ® — P(H?) x ST (H?)*,
and it is clear that it is equivariant under the action of GL(H?). This map is

invertible, and its inverse can be constructed as follows. Let ({,q) € P(H3) x
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S2(H?)*, and let (u, ..., u,) be an orthonormal basis of H® such that ug spans £.
Then there exists a unique basis (v, ..., v,) of H* such that Q(u;,v;) = &;;, and

we can define

H<(5’,2> = span{ug + o}, H((ZL) = span{u; —v;,1 < j <n}

as well as H((Z)q) = L(H((Z;)p)) for p =0,1. It is easy to see that this decomposition

H, is an element of ©, and that the map P(H?) x S%(H?)* defined in this way

is an inverse for the map H +— (¢g, gu). The rest of the lemma follows. O

Remark 5.14. Under the diffeomorphism ® ~ P(H?) x S (H?*)*, we can easily see
that for any torsion-free Go-structure ¢ on M we have ¢((H,) = H; (M, p), and
q(H,) is the inner product on H? induced by the L*-inner product on (M, g,).

Throughout this section, it will be convenient to adopt the following definition.
If H € ©, a basis (ug, - . ., Un, Vo, - .., U,) of H will be called a standard basis for H

if it satisfies the following properties:

(i) (uo, ..., uy,) is a basis of H, (vg, ..., v,) is a basis of H*, and relations (5.11)

are satisfied.
(ii) The basis (ug, . .., u,) is orthonormal for the inner product gg.
(iii) H® = span{ug +vo} and H® = span{u; —v;, 1 <1i < n}.

Standard bases always exist, and are uniquely determined by a gg-orthonormal

basis (ug, ..., uy) of H® such that uy € (.

5.2.2 The horizontal and transverse distributions. Let us denote by Gy C
GL(H?) the stabiliser of an element H € D, and by gg C gl(H?) its Lie algebra.
In a standard basis (ug, . . . , Uy, Vo, - - ., U, ) of H associated with H, gy corresponds

to the space of matrices
ogu = {(@ij)o<ij<n, Goi = o =0V0 <i<mn, a; =—a; V1 <i,j<n}.

The quadratic form gy induces an inner product on gl(H?): if a € gl(H?) corre-

sponds to the matrix (a;j)o<; j<n in the basis (uo,...,u,), we have:
n
2 2
lalg = Z Qjj-
ij=0

We denote by pg the orthogonal complement of gy for this inner product. That

is, in a standard basis,
pr = {(@ij)o<ij<n, aij = ai V1 <i,j <nj.
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The tangent space Tg® can be identified with pyg, which is endowed with the
inner product induced by qg. This defines a Riemannian metric gop on ©, ho-
mogeneous with respect to GL(H?). Let us denote by T"® the distribution tan-
gent to the fibres of ¢ : © — S3(H?)* and call it the vertical distribution of
®. The horizontal distribution of ® is defined as the orthogonal complement of
the vertical distribution, and will be denoted by 7"®. If H € © and Tu® is
identified with pg C gl(H?), then the splitting Tg® = T{D & TED corresponds
to the decomposition pg = vy ® hg, where hg is the space of endomorphisms
of H? that are self-adjoint with respect to the inner product ¢g and vy its or-
thogonal complement in py. In particular, the map ¢ : © — S2(H?)* is a Rie-
mannian fibration for the natural symmetric metric ggz of S%(H?)*. Recall that
this metric can be defined as follows: if ¢ € ST(H?)* is an inner product and
g € S*(H?)* ~ TqSi(H?’)*, there is a unique g¢-self-adjoint endomorphism a of
H? such that ¢ = 4 o (e)*q = q(a-,-) + q(-,a') = 2q(a-,-), and then we define
4|2 = tr(a®) = ¥ a; in a g-orthonormal basis.

Written in a standard basis, the horizontal and vertical spaces are given by

vr = {(ai)o<ij<n, @oi = —aio V0 < i <, a;=0V1<i,j<n},

b = {(aij)o<ij<n, i = ay Y0 <id,j <n}.

The horizontal distribution admits a further equivariant splitting. By the previous
lemma, H determines a line fg € P(H?) which is fixed by Gy, and therefore there is
a 1-dimensional subspace g C hg consisting of those self-adjoint endomorphisms
that send /g to itself and act trivially on its orthogonal complement. We denote
by tg the orthogonal complement of I in by and by 7D the corresponding
subspace of Tg®. This defines an equivariant distribution 7'® C 79, which we

call the transverse distribution of . Again, in a standard basis we have

la = {(aij)o<ij<n, aij = 0if (i,7) # (0,0)},
ta = {(aij)o<ij<n, i = a; Y0 <14, < N, ag = 0}.

Another convenient description of the horizontal and transverse distributions
can be given by introducing the filtration F® c F® c F) c FO = H associ-
ated with H € ©:

FO —gO ... H®,

Clearly this filtration determines H, and therefore this defines an equivariant em-
bedding of ® in a manifold of flags in H. Via this embedding, any tangent vec-
tor £ € Tg® can be represented by a triple of linear maps F®) — H/F® for
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p=1,2,3. Since F®) ¢ F®*=1 and H* Y g ... ¢ HO is a complement of F®)
we can in fact represent £ by (qbég), gzﬁéz), qbél)) where

(bép) CH® 5 gD g g HO

Lemma 5.15. Let H € ® and £ € Tg® be represented by the triple of linear maps
(gbé?’), ¢22), gbél)). Then & is a horizontal vector if and only if

¢§3)(H(3)> CH®PaoHO
and in this case
gbg)([_[(?)) c HW,
Moreover, £ is transverse if and only if
o (H®) € H?.
In particular if £ is transverse then ¢§p) € Hom(H® H®-),

Proof. Let (ug, ..., Uy, v,-..,v,) be a standard basis of H associated with H. In
this basis, ® ~ GL(n + 1)/({Z£1} x O(n)) and the vector £ € Tg® is uniquely

represented by a matrix ag = (a;j)o<i j<n satisfying
Qj; = Qg , V1 SZ,] Sn

Now a¢ acts on H? by a(u;) = a;;u; and on H* by a(v;) = —aj;v;, and therefore

the linear map gbé?’) is characterised by:
¢ (uo + o) Z QipU; — QoV;

n a; +(IZ‘ ;0 — Ao;
Iaoo(UO—Uo)—i—Z {020(1%—1)1)4—020@%4‘%)} ,
i=1

where the first term belongs to H(®, the second term to H® and the third to H®.
Hence gbg maps into H® @ H© if and only if ag; = a,9, that is if ag is symmetric.
This is exactly the condition for ¢ to define a horizontal vector in Tg®. Moreover
qﬁg maps into H® if and only if a¢ is symmetric and agp = 0, that is, if a¢ € tg.
Now assume that ¢ is a horizontal vector, that is, ag is symmetrlc. The only
nontrivial inclusion left to check is gb?)( H®)c HY. On H? | a¢ acts by

ag(uj — Uj) = Z aijui + Cljﬂ]i = Cloj(U() + Uo) + Z aij(ui + Uz’)
i=0 i=1
where the first term ag;(uo +vo) € H () and the second term is an element of H)

Only the projection of ag(u; —v;) onto HY @ H® contributes to ¢é2)(uj —v,) and
therefore gbéQ)(H(?)) CHW, O
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Another useful description uses the identification © ~ P(H?) x S3(H?)*. Let
H € D correspond to (¢,q) € P(H?) x S3(H?)*. Then any tangent vector is
characterised by a couple (¢, k) where ¢ : £ — ¢+ is a linear map and x € S%(H3)*.
Here ¢+« denotes the orthogonal complement of ¢ in H? for the inner product

induced by ¢. The conditions of horizontality and transversality are:

Lemma 5.16. The couple (¢, k) defines a horizontal vector in Tg® if and only if
k(u, ') +2q(p(u),u') =0, Yucl, Yu €+,

Moreover it defines a transverse vector if and only if the above holds for all u € ¢

and u' € H3, that is, if k(u,u) =0 for u € £.

Proof. Let (ug,...,u,) be a g-orthonormal basis of H? such that v € ¢, and let
a = (a;j)o<i j<n representing the tangent vector characterised by (¢, x) in this basis.

That is, a satisfies a;; = a;; for 1 <4,7 <n, and
k= —q(a,)—q(-,a) and ¢(up) =a-uy mod £.
For 1 < j < n we have:

r(ug, u;) + 2q(P(uo), uj) = —qla - uo, u;) — q(ug, a - u;) + 2q(a - up, u;)
= o — Qoj

and thus its vanishing is equivalent to a;; = a;; for all 0 < ¢,5 < n, that is, a

defines a horizontal vector. Moreover,
K (uo, uo) = —2q(a - ug, up) = —2ano

and hence a defines a transverse vector if and only if it defines a horizontal vector

and the above vanishes. O

5.3 Properties of the period mapping

As the decomposition H = H ‘(;’) DH f) DH S) DH g’) associated with a torsion-free
Ga-structure ¢ only depends on the class of ¢ modulo Z, there is a well-defined
map ¢ : .# — ®. Under the identification of ® with P(H?) x S%(H?)*, o2 € M
is mapped to (H; (M, p),e7#)/34 ) (see Remark 5.14) and thus we see that ®
is a smooth, even real-analytic map (by Theorem 4.6). In this section we study
its local properties and relate it more intrinsically to the metric ¢. In §5.3.1, we
show that it satisfies a property analogous to Griffith’s transversality, in §5.3.2 we
prove that ¢ is induced by a homogeneous quadratic form on ® and in §5.3.3 we
prove that @ is a totally geodesic immersion if and only if the Yukawa coupling is

a parallel tensor on ./ .
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5.3.1 Infinitesimal variations. The properties of the tangent map of ® are

summarised in the following theorem:

Theorem 5.17. The map ® : .# — D is a horizontal immersion, and the restric-
tion of ® to M is transverse.

Moreover, if ¢ € My and n € FHE(M, @) ~ T,p. M1, then T,o®(n) is deter-
mined by the triple of linear maps ¢$7p) € Hom(Hép),Hgfl)), p = 1,2,3, defined
as follows. Let h be the unique trace-free self-adjoint endomorphism such that
h-p=mnandletn € #:(M,p). Then we have:

(i) ¢ ([el + [O()]) =[] — [,
(ii) ¢ (0] = [#]) = [w2r 7 (h - 1)) + [epmor (B 1)),

(iii) o1 (0] + [+1']) = 2 [0, )t - ([¢] — [O(9)]).

Proof. Let {¢;}ie(—ce) be a family of torsion-free Go-structures on M such that

Ot
9t [t=0

(¢£73), <;5§]2), ¢,(71)) be the triple of linear map representing 7.,,,®(n). For all t € (—e¢,¢),

H® c H is spanned by [oi] + [©(¢¢)]. Differentiating at t = 0 we have
00 4
a(ft) =Nt g ke m (1) — *oma7(n)
=0 (5.13)

=m(n) + 3 %, T () + Tar(n) — *,To7(n).

w9 = ¢ and assume that = 7 is a harmonic 3-form. Let H; = ®(p;) and

91
ot

t=0

Since 7 is harmonic with respect to g, the first two terms term represent an
element of H® & H{), and the last two terms an element of H{?, and hence
o@(HE)) € HP @ HY). If moreover all ¢, have unit volume then m(n) = 0,
and thus ¢%3)(H§(03)) C Hg). Hence the first part of the theorem follows from the
previous lemma.

Let us now assume that Vol(y;) = 1 for all ¢ and let us compute the differential
of ®. The expression for ¢7(73) follows from (5.13) since the first two terms vanish.
Now let ny,...,nm, be a basis of 53 (M,p), and denote by 7, the element of
J3(M, ;) such that [, = [n.] € H*(M). For small enough ¢, the differential

forms 7, , defined by

1
Mot = Nat — = / (Nat A O(@r)) - @4

form a basis of 43(M, ;). Thus Ht@) is spanned by the cohomology classes
Mee] = o), a =1,... n, for small t. At ¢ = 0, each 5, is orthogonal to ¢ and

i + (;/mnww) 52
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thus by Lemma 1.6 we obtain

3772,t
ot

_ a77(1,15
ot

t=0 t=



Aot

. . 877a’t
2 In particular since =+t

t=0" 9t li=0

where n = is exact the harmonic part of

62‘%’t . is (% [(Na, M)ette)p. On the other hand, if we write n = h - ¢ where h is

traceless and self-adjoint, then by Lemma 1.3 and Corollary 1.4 we have

0 x4 1M, Mgy
——— =Ry — *p(h e n) + ok
8t t=0 at t=0
(9*,57](’1’15

is
t=0

and since h anticommutes with *,, the harmonic part of

ot

20, 0 10) + (5 [ usdons) - O1).

Moreover, we have

mottom) = (5 [0 n o) -0 = (3 [lmmans) ¢

and thus gathering all the results we obtain

O[] — [¥emae])
ot

= 2lgmar(he )]+ (7 [t mdone) - (] + [©(0))

= 1770 (h - 0g)] + [*pm2r 7€ (R - 1)) mod Ft(z).

t=0

This yields the claimed expression for gbgz). By a mere change of sign, the expression
for ¢{1) follows from the fact that

O([nf,e] — [xemae])
ot

= (= [ m)ens) - (l¢ — (O mod EY.

t=0

This finishes the proof of the theorem. n

5.3.2 Riemannian aspects. The map ® : .Z — © is not a local isometry
for the metrics ¢4 on .# and go on ©. Nonetheless, it naturally determines the
metric 4. Since 4 = 7dt? + %, under the splitting .# ~ R x .4, it is enough
to prove that the restriction of ® to .#; determines the metric ¢;. Because the
map ® : # — D is transverse, it turns out that ¢4 can be seen as the pull-
back of an indefinite quadratic form hg on the transverse distribution. To define
ho, let H € D, and consider a transverse tangent vector £ € TE®. By Lemma
5.15, it can be represented by a triple of linear maps (gbé?’), gbéz), qbél)) where gbép ) ¢
Hom(H®, HP=Y), If w € H®\{0}, define

Q{9 (w)), ¢ (w))
Q(v(w), w)
This does not depend on the choice of w, and since Q(c(H®), H®)) < 0 this defines

a nonnegative, equivariant quadratic form on the transverse distribution 7%®.

h®(€7 5) = -
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Proposition 5.18. ¢, = 7®*hy.

Proof. Let ¢ be a unit volume torsion-free Go-structure on M and take w =

[o] + [O(p)] € HY, so that

Let n € #55(M, ), identified with an element of T,g.#1, and let (¢{¥, ¢, V)
be the triple of linear maps representing T®(n) € Ty, ®. By Theorem 5.17 we

have
Q6 (w), 857 (w)) = Q) + e, ] = begml) = =2 [ InfZn,
Thus ®*ho(n,n) = %(n,1)/7. O

In the same way, ® determines the Yukawa coupling = on .#; by Lemma 5.11,
—dt ® 9 4+ =, and thus we just need to show that =; is the pull-back of an

equivariant cubic form defined on the transverse distribution in ®. If H € © and

—_
—
—

£,8,8" € THD, each transverse vector is represented by a triple of linear maps
((bé?’), gzﬁf), gzﬁél)) and similarly for ¢ and ¢”. Since each gzﬁép ) maps H® to HF-D),
the composition gbél) o ¢g) o qbg’,) defines a linear map from H® to H®. Both are

1-dimensional spaces, and thus there exists a unique Z5(&,¢’,£”) such that
o) 0 0 0 08 (w) = —Eo(€,€,€") - 1(w), Vw e HE).

This defines equivariantly a cubic form Z5 on T'D.

Proposition 5.19. =, = 79¢*=5.

Proof. Let ¢ be a unit-volume torsion-free Go-structure on M and n,7n',n" €
JE3(M, ). Theorem 5.17 yields:

&) 0 0 0 B[] + [O(p)]) = ; / mor (W ") et - ([¢] = [O(2)])

which proves the proposition. O

Remark 5.20. This is similar to the way the Yukawa coupling is defined on the
moduli spaces of Calabi—Yau threefolds, as described by Bryant and Griffiths [18].

Remark 5.21. The way we defined it, =g is actually not a symmetric cubic form
on T'®. However, we will in Section 5.4 consider the transversality condition as
an exterior differential system on ®, and show that the restriction of Zp to any
integral element is fully symmetric (see Remark 5.28). Hence Zg will be symmetric

along any integral submanifold of the transverse distribution.
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5.3.3 A condition for ¢ to be totally geodesic. In this part, we relate the
geometry of the immersion ® : .# — ® with the computations of the Section
5.1 and refine the observations of §5.1.3. Our main result is that the covariant
derivative of the Yukawa coupling =, or equivalently the extra term &ppeq + Srapa +
Ewpaa, essentially characterises the second fundamental form of ®(.#) inside the

domain ®. More precisely, we have

Theorem 5.22. The Yukawa coupling is a parallel tensor if and only if ® : A —
® is a totally geodesic immersion. Moreover, if these conditions are satisfied
then the Levi-Civita connections of 4 and ®*go coincide and (M ,9) is a locally

symmetric space with nonpositive sectional curvature.

Remark 5.23. This result is a Go-counterpart for theorems of Liu-Yin [87] and Wei
[119] for moduli spaces of Calabi-Yau 3- and 4-folds.

For the proof of the theorem, first remark that since ® is a horizontal immersion,
(M) is totally geodesic in D if and only if the composition go® : 4 — S7(H?)*
is a totally geodesic immersion. Moreover, the metrics ®*gp and ®*¢* 9gs2 coincide,
and therefore it is enough to prove that the results hold for the map g o ® instead
of ®. The advantage of working in S3(H?)* instead of ® is that we can work
directly in coordinates which are compatible with affine coordinates on . .

First we need to introduce some notations. For the remainder of this part we
will fix a basis (uo,...,u,) of H> and denote (z°,...,2") the associated system
of coordinates, considered as local coordinates on .#. Any symmetric bilinear
form ¢ € S?(H?)* can be written uniquely ¢ = qudaz*dz' where qu = q and as
before we write daz*dx! as a short-hand for the tensor product dz* ® da'. Then
(qr1)1<k<i<n define global coordinates on the open cone S% (H?)* of inner products
on H3. Let us write the canonical symmetric metric of sz in these coordinates.
Let us pick g € S2(H?)* and ¢ € S*(H?)* ~ T,5% (H?)* written as

q = quda®ds’ € S2(H?)*, ¢ = gudatda’ € T,S(H?)".

There exists a unique g-self-adjoint endomorphism a of H? such that ¢ = % ‘t:O (") q =
q(a-,-) + q(-,a-) = 2q(a-,-) and by definition |¢|2 = tr(a®) = ajaj,. In coordinates

we have af = %qqu}l and hence it follows that

. Lot v
952(4:9) = 74" 4" der Gt

One can use this expression to compute the Christoffel symbols of gs2 and deduce

that its Levi-Civita connection V can be characterised as follows:
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Lemma 5.24. Let § = Gdr®da’ and ¢ = §,dx"dx’ be vector fields with constant
coefficients on ST(H?*)*. Then the covariant derivative V4§ is given by

= - Lo 0.
qu/ = _iq (riQZs + Qquzs)dmkdl‘l'
If  is a torsion-free Go-structure on M then go ®(¢2) is the L-inner product

induced by ¢ on H? ~ J#3(M, g,), and therefore in the coordinates z* we have

q(z) = e 7 PG da* dat (5.14)

Z7/3 = Vol compensates the volume normalisation in the defi-

where the factor e”

nition of the metric . Thus as a subspace of S (H?*)*, (¢ o ®).T.# is spanned

by the vectors
99

P 1
i e~ 713 (ngakz — 3,§Za%d> defdxt, a=0,...,n. (5.15)
xa

With a small abuse, we still denote V the pull-back connection (g o ®)*V, con-
sidered as a connection on the trivial vector bundle .# x S?(H?)*. Using Lemma
5.24, we have

0 1 1 1
78 67//3 (fabkl — g abgkl Syaybkl - ggzbyakl + g Jbgkl> dxkdxl
1 4 1 1
— e TPy (%M - 3%%) (%s - 3%%5) dr*da’

1

. 1 1
— 567(7‘/?)%7“8 (yaks - Byagks> (ybh“ -

39},%0 dadx!
—7/3 1 1 S 1 kgl
=e Fabkl — 254 FakerFvis — *g FaksFvir — ggab%l dx"dx’.
In the next proposition, we rewrite this expression in a more intrinsic way:

Proposition 5.25. The connections V, V¥ and the covariant derivative of the

Yukawa coupling are related by

0

— 0 -
Vg5 = Vo, g5+ 277 PV Epda’ da’

where we see V4 5% as an element of S*(H?)* via the inclusion (q o ®). T4 C
S%(H3)*.
Proof. By our previous computation we have

\v a 1 s
Vogs o~ /3 <¢abkl 59" (Fatr Fots + FatsPir + ot gkls)> dk !

+ 6_9/3 < GgreF abrfk;ls g@%/ﬁ) dlL‘kd:El
(5.16)
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Comparing with the expression of the covariant derivative of the Yukawa coupling
given in §5.1.3, the term on the first line is 26*'?/3Vf5bkl. We need to rewrite the
second term using the special properties of the function .# and its derivatives. By

Remark 5.1 and Lemma 5.11 we have the identities
Z[ngsm = —ﬂs, $m§mab == _anb- (517)
Now let us compute:
1 1 1
§gm§abrﬁs = _igrsgsmxmyabr = _ixrtggabr = gab

and thus the term on the second line of (5.16) can be written as

P 1 1 1 P 1
e 713 (zgrsyabrykls — 3%b%~cl) = §grscgaabr e 73 (c%czs — 39}%1) .

By (5.4), %%”Sﬁabs are the Christoffel symbols of the metric ¢ in the affine coor-

dinates 2*, whilst e=7/3(Fps — %cy@sffkl)daﬁkdml is just 5955 by (5.15). Hence

1 ; 1 0
~G T T (3? s — = F:Y) ) =V§ =
B br € Kl 3 Kl B O

which finishes the proof of the lemma. m

After these preliminary computations, let us now prove the theorem:

Proof of Theorem 5.22. From the previous proposition it follows that if VZZ = 0
then the connections V and V¥ coincide. In that case, V has no component along
the normal space of ¢ o ®(Z) in S%(H?)* and thus ¢ o @ is a totally geodesic
immersion. This also implies that V is equal to its projection on the tangent
space of .4, which is exactly the Levi-Civita connection of ®*gp, and therefore
¢ and ®*gp have the same Levi-Civita connection. Moreover, since ST (H?)* is
a symmetric space with nonpositive sectional curvature [59], the metric ®*gy =
@*q*gsi is locally symmetric and has nonpositive sectional curvatures, and as
these properties only depend on the Levi-Civita connection the metric ¢ must
also satisfy this property.

It remains to prove that if ® is a totally geodesic immersion then the Yukawa
coupling is parallel. Thus let us assume that ® is totally geodesic. Since the map
q:® — S3(H?)* is a Riemannian fibration and @ is a horizontal map, it follows
that go ® is also a totally geodesic immersion. Therefore, the connection V of the
bundle .# x S*(H?3)* must preserve the tangent space T.# (seen as a subbundle).
Given the expression of the connection V given in Proposition 5.25, we deduce that
for all 0 < a < b < n, the quadratic form V=, dz*dz! is a section of T.# when ®
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is a totally geodesic immersion. We shall now prove that there exists a subbundle
E of M x S?*(H?)* such that T.# ® E = A4 x S*(H?)* and V,Zydatda! is a
section of E for any 0 < a < b < n. Once we have shown this, then when & is
totally geodesic each V,Zydx*dal is a section of both T.# and its complement
E and therefore it must vanish, whence V, =y, = 0 for all 0 < a,b,k,l < n and
the theorem is proved.

Using local affine coordinates, let us define E by
B, ={q € S*(H°)", q(-,x) = 0} C S*(H)".

The subspace E,, has codimension n+1 in S?(H?)*, that is codim(E,,) = dim(T,.#).
By Lemma 5.11, for any 0 < a,b < n the covariant derivative of the Yukawa cou-
pling satisfies

JZTVfEka =0
and therefore the quadratic form VfEbkld:ckdxl takes values in F,.

In order to prove that E, is a complement of T,.# in S*(H?)*, we need to

prove that the n + 1 linear forms aiqa (-,x) € (H®)* are linearly independent. By
(5.15), we have

0 1
e? /3 8xq“( 1) = 2" Fyppda® — gxrya%krdxk

1

o

Oz’ 3 Oz

where we used the identities (5.17) to pass from the ﬁrst to the second line. After

a linear change of coordinates, we may assume that &Cl Sy aan are tangent to the
level set of .# at the point x. Hence we just have ;q (,2) = —2e=7/39(0,,-) for

1 < a < n, and this gives n linearly independent linear forms. Moreover, using

Remark 5.1 we can compute that

g B 1 07 7
9/3 r . = —2 a . d e 2 — — = — .
T 03:7“( ,T) 9 ( > + 31’ 9pa F d.F 3d/¢ G (x,-)

o)
ox”

is linearly independent of a 2, 8% (as 2".%, # 0). Thus the n + 1 linear forms

aiqa(-,x), a = 0,...,n, are independent. Hence T,.# is a complement of F, in

S%(H3)*, which completes the proof of the theorem. O

and this gives another linear form independent from the previous ones, since x"
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5.4 Transversality as an exterior differential sys-
tem

By means of closing this chapter, this section gathers a few general observations
about the transversality conditions for immersions into the domain . This no-
tably allows us to relate the map ® which we defined on Gy-moduli spaces to the
classical notion of period map defined by Joyce [66, §10.4] in a natural way.

Our general setup is the following. We will denote by H a 2(n+ 1)-dimensional
vector space (n > 1) endowed with a symplectic structure ) and an involution ¢
of H such that :*Q) = —@Q). We denote by H. C H the £1 eigenspaces of ¢, which
must be Lagrangian. In particular, ) identifies H_ with H7. This structure is
exactly what we need in order to define abstractly the domain © as the space
of decompositions H = H® @& H® @ HY @ HO satisfying the axioms (1), (2)
and (3). Of course if H = H3(M) & H*(M) for a compact Gy-manifold M, then
H, = H3(M) and H_ = H*(M). All the notions defined in Section 5.2 carry on
to our abstract setting in a straightforward way, including the notion of adapted
basis of an element H € @D, and the definitions of ¢y € P(H) and ¢ € STH?.

5.4.1 Dimension and generality of transverse submanifolds. In this part
we study general properties of transverse immersions. For this purpose, it will be
useful to express the condition of transversality as an exterior differential system.
For generalitites about exterior differential systems, we refer to the lectures [17].
Let us denote by I C T*® the annihilator of 7*®. Then a map ® : P — D is
transverse if and only if

O =0, VaeC™®()

where C*°(I) is the space of smooth sections of I over ©. We denote by {I} C
A(T*D) the ideal algebraically generated by I, seen as a subbundle of the exterior
algebra A(T*®). Alternatively, {/} can be defined as the space of differential
forms vanishing on the transverse distribution. Therefore, the pull-back of any
section of {I} vanishes along a transverse map, and so does the pull-back of the

exterior differential of such a section. This leads us to considering the bundle map
§: 1 — A*(T*D)/{I} defined as

da =da mod {[}

for any section of I. The differential ideal .# C Q*(®) generated by I is the space
of sections of the ideal {I,0I} C A(T*®), where we think of A*>(T*®)/{I} as
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A(T'D)* C A*(T*®D). With these definitions, a map ® : P — D is transverse if
and only if
O'n=0, Vne.s.

We will be interested in transverse maps satisfying certain independence condi-
tions. Namely, we want to study n-dimensional transverse immersions ¢ : P — ®
such that the composition f o ® : P — P(H,) is a local diffecomorphism. This
condition is equivalent to requiring that the pull-back w of a local volume form
on P(H, ) does not vanish on P. Such an immersion locally defines a submanifold
of ® ~ IP(H,) which is graphical over an open subset of P(H,), and is said to be
an integral submanifold of (.#, w) (with the understanding that w is only locally
defined if P(H, ) is not orientable).

Since the transverse distribution is equivariant, the properties of the differ-
ential ideal .# are determined by the fibre Iy of I and the map ¢ : Iy —
A*(T3;®)/Ig over any point of ©. Thus we shall fix H € © and a standard
basis (ug, . . ., Un, Vo, - . ., v,) of H for H. Recall from §5.2.2 that the tangent space

Tu® can be identified with the space of matrices
pu = {(aij)o<ij<n, @i = a;; Y1 < 4,7 <n}.
Moreover, the distributions 7°®, T"®, T'® and T'® correspond to the subspaces
bg={a €pu, a;; =0V1 <i,j <n and ay; = —aj V0 < j <n},
ba = {a € pu, a;; = a;; Y0 <i,j <n},
[H = {CL € Pu. Q5 = 0 if (la.]) 7é (0,0)}7811(1
tH:{CI,GpH, aoonandaij:ajiVOSi,jgn}.
Let us consider the linear forms on py defined as:
aj(a) = (ajo — ag;)/2, 1<j<n,
Bi(a) = (ajo + ao;)/2, 0<j<n, and
Bija) = (ai; + a3)/2 = B, 1<4,j5<n.
Then Iy is spanned by By, a1, . . . , ay,, and moreover we can choose @ = BA---Af,
as independence condition at H. Let us denote by {e; }1<j<n U {fj}o<j<n U {fij =

fiih1<i<j<n the dual basis of py.

The structure equations for the transverse distribution are the following:

Proposition 5.26. The map § : Iy — A*(p3y)/{Iua} is determined by:

6o =0 mod {Iu}, and da; =) BiAB; mod {Iu}, 1<j<n

=1
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Proof. The dual space pjy is naturally identified with the annihilator of gg in
gl(H.), and A*(p3;)/{Iu} can be identified with A?(t};). Under this identification,

the Maurer-Cartan formula yields:
da(a,b) = —a([a,b]), Vo€ Ig,Va,be ty

where [, -] denotes the Lie bracket on gl(H, ). Therefore, if we write

1 1 1
= 5 Z Bz]ﬁz A Bj + 5 Z Cz]kﬁz A\ Bjk + Z Z Dijklﬁij A\ Bkl mod {IH}

where all indices range over integers in between 1 and n, the coefficients are defined
by:

Bij = —a([fi, f}]) = = Bji,
Cije = =2"%a([f;, fir]) = Ciry, and
Dy = —2"%%%a([fi5, fix]) = Djir = Dijue.
Note that for any [a,b] € tg, the bracket [a,b] is gg-antisymmetric, and since S
vanishes on gg-antisymmetic endomorphisms we deduce

6o =0 mod {[u}.

As endomorphisms of H., the f;;’s act trivially on ¢y and leave invariant its
orthogonal space, and thus so do the brackets [f;;, fiz]. Hence we deduce that
a([fij, fr]) = 0 for any a € Iy. On the other hand, as the e;’s are gg-antisymmetric,
the brackets [e;, e;] are gg-symmetric, and thus ax([e;, e;]) =0 for all 1 <4, 4,k <

n. These observations yield

doy = —; > ol f, fi))Bi A Bje mod {Iu}

and it only remains to compute the coefficients o, ([f;, fjx]). Let us introduce the
basis { Ei; }o<ij<n of gl(Hy) defined by E;;(uy) = d;xu,, for 0 <4, 5,k < n, so that:
e; = Ejo — Eyy, 1<j<n,
fi =27%(Ej + Ey;),  0<j<n,
fij = 276]7c (EZJ + Eji); 1 S Z,j S n.

From the commutators [E;;, Ey| = 0, Ey — 0y E); we deduce:

¥R

2% [ f;, fir] = [Eio + Eoi, Eji + Ej] = —0ijer, — die;

and hence
1 n
50&1 = 5 Z ((Sijékl + 5@]?5]1)51 N Bjk = Zﬁz A ﬁil mod {IH}
1<i,j,k<n i=1
forany 1 <[ <n. O]
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Let £ C Tg® be a linear subspace. It is said to be an integral element of
& if the restriction of any differential form in .# vanishes on E. If moreover £
has dimension n and w does not vanish on E then it is called an integral element
of (#,w). The integral elements of (.#,w) based at H are easily determined
using the structure equations of the transverse distribution. Indeed, the indepen-
dence condition w # 0 is equivalent to the linear independence of the linear forms
B1,...,Bn, and any n-dimensional subspace F C tg satisfying this condition is

uniquely characterised by the equations:
fo=or ==, =0,

Bij =Y Cijubr, V1<i,j<n,
k=1

where (i, are arbitrary coefficients symmetric in the indices ¢ and j. The necessary
and sufficient condition for E to be an integral element of .# is that the 2-forms
daq, ... 0, € A*(t};) vanish on E:

0= > CipBi N B = 5 > (Cijk — Crji)Bi A B, V1< j<n.
k=1 k=1

Hence E' is an integral element of .# if and only if the coefficients Cjj;, are fully

symmetric in the indices 1, j, k.

Remark 5.27. From the definition of the quadratic form hp on T'® and the ex-
pression of the linear forms 3y, ..., 3,, one can easily see that hy = >, 32. Hence
an integral element F of ¢, of rank n, satisfies the independence condition w # 0

if and only if the restriction of the quadratic form hg to E is positive-definite.

Remark 5.28. Similarly, the coefficients C;;; correspond (up to a combinatorial fac-
tor) to the coefficients of the cubic form Zg, in the basis of E dual to 51, ..., (..
This explains why the restriction of Zg5 to any integral element of (., @) is sym-

metric, even though Zy5 itself is not a symmetric cubic form on T*®.

Remark 5.29. Let Ey, Es be integral elements of (.#,w) (not necessarily based at
the same point), and denote by (h;, Z;) the restriction of (hg,Zg) to F;. Then it
is not difficult to prove that if there is a linear isomorphism ¢ : E; — Es such that
¢*(hg, Z2) = (h1,Z1), then there exists an element A € Aut(H, @, ¢), unique up to
multiplication by 4 1Id, such that ¢ is the restriction to E; of the action of A on
the tangent space T'D.

This algebraic fact has an interesting counterpart (which we will not prove for

lack of space) for real-analytic integral submanifolds of (.#,w). Namely, let P
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be a connected real-analytic manifold and ®;, 5 be two real-analytic transverse
immersions of P into ©, such that ®j(hp,Z9) = ®5(ho,=Zp) and Php is non-
degenerate. Then there exists an automorphism A € Aut(H,(Q,¢), unique up
to multiplication by 4+1Id, such that ®; = A o ®;. This can be proved by first
considering the tangent map at one point, using the previous algebraic fact, and
then extending it to the rest of the manifold.

This might explain why, in the literature, the metric ¢4 and the Yukawa cou-
pling = are the only natural tensors considered on Gy-moduli spaces (at least to
the author’s knowledge); in some sense they completely characterise the geometry

of # and how it is immersed into ©.

An integral element of .# is called maximal if it is not strictly contained in
another integral element of .#. Any integral element of .# is contained in the
transverse distribution, but due to the non-triviality of the map ¢ the codimension
of a maximal integral element of .# is in general much larger than n + 1. As a

consequence of the previous proposition we prove:

Corollary 5.30. Any integral element of (&, w) is a maximal integral element of

. Thus any integral submanifold of (%, w) is a maximal transverse submanifold

of ©.

Proof. Tt suffices to prove that any integral element of .# on which (5, ..., [, are
linearly independent has dimension exactly n. Let E be such an integral element.

As da; vanishes on E, then so does the n + 1-form
BiA-ABit ABigi A=+ A By Ny = (=1)" " w A By

for 1 <4,7 <n. Hence Bi,..., ,, Bi; are linearly dependent on E, and therefore
there exist coefficients Cjj, symmetric in 7 and j such that E is contained in the

kernel of the w linearly independent linear forms
Bij =Y Cijibr.
k=1

Since moreover (g, aq,...,q, vanish on F, E is contained in the kernel of n +
1+ w linearly independent linear forms on Ty®, and thus it has dimension
at most n. Since fi,..., [, are linearly independent on E we deduce that E has

dimension n and is an integral element of (&, w). O

Remark 5.31. Using the structure equations of the transverse distribution, one can
prove that any integral element of (.#,w) is a regular integral element of .# in
the sense of Cartan—Kahler theory. Moreover, the general real-analytic integral
submanifold of (.#, @) depends on n + 1 constants, n functions of one variable,

..., 2 functions of n — 1 variables and 1 function of n variables.
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5.4.2 The canonical contact system. Let us denote by Q@ C P(H) the open
subset defined by
Q= {(w) € P(H), Q(¢(w),w) > 0}. (5.18)

The automorphism group of (H, @, ), which can be identified with GL(H, ), acts
transitively on €2, and there is an equivariant fibration 7 : ® — ) mapping any
H e D tor(H) = H® € Q. The domain Q carries a differential ideal obtained
by restriction of the canonical contact system of P(H), which can be described as

follows. On H\{0} we can consider the one-form
I' = Q(dw,w). (5.19)

Since @ is alternated, T',, vanishes on (w) for any w # 0, and moreover I'y,, = f2T,,
for any smooth nowhere vanishing function f defined on H\{0}. Hence I" induces
a well-defined 1-dimensional subbundle of T*P(H), and the associated exterior
differential system _¢ is the canonical contact system. The name contact system

corresponds to the fact that
YA (dy)" #0
for any nonvanishing one-form in ¢. It is a classical fact that the maximal

integral submanifolds of such a system have dimension n. Using coordinates

(W, ..., w", wy,...,w,) on H such that
Q=) dw;Aduw (5.20)

j=0
then the contact system, in homogeneous coordinates [w® =1:w': ... :w" : wy:

s wy], is generated by:

v =dwy + > wdw; — w;dw’ (5.21)

j=1

and in particular:

dy = =2 dw; A duw’. (5.22)

j=1
In this part, we point out that there is a one-to-one correspondence between in-
tegral submanifolds of (.#,w) and maximal solutions of the canonical contact
system on (2, together with some open condition. In fact, the exterior differential
system (.#, w) appears as the first prolongation of # . Since our construction is a
straightforward adaptation of an argument of Bryant and Griffiths [18] who prove
a similar result for variations of Hodge structures, we will only briefly explain the
correspondence and refer to their paper for more details on contact systems and

the process of prolongation.
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Let us denote by V, (€, #) the space of n-dimensional integral element of _#
over §2. We consider the open subset Vo, C V,,(€2, _#) defined as:

Vo ={E € V(2 _#), Qu6(w)), 6(w)) <0, Vo € B}

where we identify the tangent space T,€) with the space of linear maps from =
to its Q(¢-, -)-orthogonal complement in H. The domain Vj, is acted upon by the
automorphism group of (H, @, ¢), identified with GL(H ). The key observation is:

Lemma 5.32. There is an equivariant diffeomorphism ® — Vo such that the

following diagram commutes:

Ky

Va

N

Q

Proof. It is enough to show that we can identify the fibres of ® and Vi, over an

element 7 € 2. Let us use coordinates (w°, ..., w™ wy,...,w,) on H such that Q

takes the form (5.20) and ¢ reads:
L(w? wy) = (wy, w’).

We can moreover assume that % € m since ™ € ). Hence the integral elements

of the contact system lying over 7 are subject to the equations:

dwy =0, and Zdwj A dw’ = 0.

j=1

Denoting H® = 7, the space of integral elements lying over 7 can therefore be

described as the set of n-dimensional subspaces H® C H satisfying:
QUH®), H®) = Q(HY, H®) = QUH®, H) =,
and moreover such an integral element belongs to Vg, if and only if
QUuH®P), H?) < 0.

If we let H® = ((H®)) and HY = ((H®), the above conditions are equivalent to
requiring that H = H® @ H® @ HY @ HO® be an element of D. O

Let us denote by Gr(n, T2) the Grassmannian of n-planes in T2, and consider
Vo as a submanifold of Gr(n,T€2). Let us pick E' € Vg, and denote by H € © the

corresponding base point. We may use coordinates (w°, ..., w™ wy, ..., w,) such
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that @ takes the form (5.20), ¢(w?, w;) = (w;,w?), and moreover the decomposition
H=H® g H®gHWY g HO satisfies:

0 0
3) _ (2) _ ;
H —span{awo}, H —span{awj,lgjgn}.

We use homogeneous coordinates [w® = 1:w': ... :w" :wp:...: w,]onP(H). In
a neighbourhood of E in Gr(n, TS?), the 1-forms dwy, . . ., dw, are linearly indepen-
dent, and therefore Gr(n,T2) has a system of coordinates w!, ..., w", wy,...,w,,

q',p¥ for 1 <i,j < n so that:
dwy = Z ¢'dw;, and duw’ = Zpijdwi. (5.23)
i=1 i=1

In homogeneous coordinates, the canonical contact system of P(H) is generated by
a 1-form ~ satisfying (5.21) and (5.22), and thus the submanifold Vo, C Gr(n,T2)

is cut out by the equations

and
p=p", 1<ij<n

In particular, the variables w!,...,w™ wy,...,w,,p¥ for 1 < i < j < n are
independent of Vg near E.
In the domain where dwy, ..., dw, are linearly independent, (5.23) defines an

exterior differential system on Gr(n,T$?), called the canonical system. Its restric-
tion to Vo, often denoted ¢ (M) is called the first prolongation of the exterior
differential system _# on €2, and its n-dimensional integral submanifolds are in
one-to-one correspondence with the integral submanifolds of # whose tangent

spaces lie in Vo. At the point £ € Vo, we have ¢' = p¥ = 0 and thus:

d(dwo — > ¢'dw;) =0 mod {dwy,dw", ... dw"},

=1

and

d(dw’ — Zpijdwi) =) dw; A dp”  mod {dwy,dw’, ..., dw"}.
i=1

i=1
Examining the proof of Lemma 5.15, we see that we have the identifications o; =
dw' for 1 < i < n, §; = dw; for 0 < j < nand B;; = dp” for 1 < i,j < n, in
the notations of the previous part. Comparing with the structure equations of the

transverse distribution in ®, we deduce:
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Proposition 5.33. Under the identification © ~ Vo, (&, w) is the restriction
to Vo of the first prolongation /(1) of the canonical contact system of Q2. Con-
sequently, there is a one-to-one correspondence between the immersed transverse
submanifolds of ® on which hy is a Riemannian metric and the mazimal integral

submanifolds of the canonical contact system whose tangent spaces lie in V.

For the moduli spaces of Gs-manifolds, this result has a clear interpretation.
Indeed, it was proved by Joyce that the map 02 € .4 — [p]+[O(p)] € H> (M) &
H*(M) is a Lagrangian immersion. In particular, the restriction of this map to
A composed with the quotient map H\{0} — P(H) is a Legendrian immersion.
Hence ., can be seen as a maximal immersed integral submanifold of the canonical
contact system of P(H), and it is easy to see that its tangent spaces lie in V. The
transverse map ® : .#; — © which we constructed is exactly the associated
integral submanifold of (.#, w); and moreover, up to a factor the restriction of hy

coincides with the metric ¢, (by Proposition 5.18).

5.4.3 Transverse submanifolds and local potentials. To finish this chapter,
we show that the potential .# can be recovered (at least locally, and up to some
choices of normalisation) from the map ® : .#; — ®. In fact, we can locally
associate a convex function to any integral submanifold of (.#,w). In particular
this shows that the result of Theorem 5.22 is not specific to Go-moduli spaces, but
holds for any integral submanifold P of (.#,w): the restriction of Zg is parallel for
the Levi-Civita connection of the metric defined by restriction of hg if and only if

P is a totally geodesic submanifold of ©.

In the remainder of this part, let us fix a basis ug, ..., u, of H, and consider
the corresponding coordinates z° ... 2" on H,. For any z = (2°,...,2") €
H,\{0}, we denote by (z) € P(H,) the line generated by = and [z° : - : 2"]

its homogeneous coordinates. For any open subset U C P(H,) we denote by
C(U) € H\{0} the open cone over U, that is:

C(U) ={z € H\{0}, (x) € U},
Locally, an integral submanifold of (.#,w) can be described by a map
U — P(Hy) x ST(H.)", € (L qe)
where U is an open subset of P(H,). On C(U), let us consider the function
W(2) = g2, 2).
This is a positive function, homogeneous of degree 2.
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Lemma 5.34. The first derivative of W is given by:

ow
a$a = 26](;;;)(1‘, UG)'
Proof. The partial derivatives of W satisfy:
ow
A = (0a4() (2, %) + 241 (7, ta)-
Since the map (z) — ((), q()) is transverse, Lemma 5.16 yields 0aq(z) (2, ) = 0,
from which the proposition follows. n
Proposition 5.35. The function F = —% log W is convex on C(U), and moreover

its Hessitan matrixz is given by:

PF g (o)
0xeOx? Q) (x, )

Proof. We first compute the Hessian matrix of W. The precedent lemma yields:

PW

Spegat = 2004w (@, ta)) = 2(004()) (2, Ua) + 2412 (Ua, ).

Let ¢y : (z) — ()%= be the linear map representing the vector 9, (z) € Ty P(Hy).

Then it has for expression:

op(x) = up —

By transversality, Lemma 5.16 gives:

(Ooqay) (T, Ua) = —2q(y (Dp(2), ug) = 2440 (Z;Z’;E(Lq%(ub’x) — 2z (Uq, up)

so that o9 Jgun o )
" Q(z)\Uq, T )q(2)\Ub, T

= -2 T as '

OxeOxb Q) (@, ) U)o )

We may now deduce:

0? log W . 4(]( (ua, )Q(x (ubax>

Q) (Uas Up)  2q(2y (Uas T) - 2q () (Up, T)

dxedzb Q) (2, 2)? 2 Q) (2, ) Q) (2, 2)?
_ o) (Ua, )
Y(z) (z,2)
which gives the claimed expression for the Hessian matrix of F. O

We shall refer to F' as the local potential associated with the transverse map
¢ — (£,q;). The above proposition shows that gy can be reconstructed from
F, since it coincides with the Hessian of F' at the point x of the line such that

W (x) = 1. In fact, there is a converse to this statement:
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Proposition 5.36. Let C C H, be an open cone, U = S, NC be its cross-section
and let W : C'— R be a positive function, homogeneous of degree 2, and assume
that the function F = —%logW is strictly convex. For any u € U, let us denote
by x(u) € Hy the unique element of (u) such that W(x(u)) = 1. Then the map:

0*F

UEU'—>(<U>,W

) € P(H,) x S3(Hy)

z=xz(u)
18 transverse.
Proof. Let us first determine the tangent space to the level sets of F'. By homo-

geneity, we have:
F(tx) = F(z) —logt, Vt>0
and differentiating this expression with respect to ¢ and then setting ¢ = 1 yields:
oF
x° =—-1, Vxel.
ox®

Since the left-hand side is constant, the partial derivatives of the expression on the

right-hand-side vanish:

O*F OF
¢———+ — =0, Vel Vb=0,...,n. 5.24
* redat * Oxb * " (5.24)
Let us denote by ¢, € Si(HJr)* the quadratic form associated with the Hessian

matrix of F. With these notations, the above equation can be written as:

$)+qx(m,ub) =0, VeeC Vb=0,...,n.
Thus the tangent space to the level set of F' at a point x € C', or equivalently the
tangent space to the level sets of W, is the orthogonal complement of x for the
quadratic form ¢,. Let X;(x),..., X, (x) be any local frame of the tangent space
to the level sets. By Lemma 5.16, transversality is equivalent to the fact that the
partial derivatives of ¢, in the directions of Xj, ..., X, along the level set W =1
satisfy:
(0x,0:) (T, ua) + 2¢2(Xp,ug) =0, Ya=0,...,n.

Since ¢, is the Hessian of a function we can write:

n

(aXb%c) (7, uq) = Z T(0cq ) (X, Ua)

c=0

and taking partial derivatives in (5.24) we obtain:

z”: . OF 49 oF 0

T —

= 0xe0xb0zc Ox*Qxb

that is, > 2°0.q, + 2q, = 0, which implies the desired identity. H
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Remark 5.37. In fact, the proof shows that there is nothing special about the

1
29

that the function Y 2 g; is constant. Hence we could replace W by a positive

function, homogeneous of degree d > 0 and the result would still hold. In the case

level set W = 1, or about the normalisation factor 35, since we only used the fact

of Go-moduli spaces, the function F' does not coincide with the the potential .7,
but they are related by an affine transformation. This does not really affect any

interesting geometric property.

Proposition 5.38. Let A € R\{2}. Then in the setup of the previous proposition,

0PF

T € C — <<$>7€/\FW(ZE)

) € B(H,) x S2(H, )
1s a horizontal immersion.

Proof. We have already proved that the differential of this map is transverse along
the level sets of W. Thus it only remains to prove that the map is horizontal in the
radial direction. Let use denote by ¢, the quadratic form defined by the Hessian
of F. By Lemma 5.16, this amounts to proving that

> 20.(eM q.) (x, X) = M (2N Fg(x, X) + 2°0.q, (2, X))0

for any vector X orthogonal to x, which is satisfied since Y, 2%(0.q;) + 2¢, = 0.
To prove that the map is an immersion, it suffices to remark the the differential
of the map in the radial direction is not transverse, since 3. 2°0.(e* ¢, )(z, 1) =
(A = 2)qu(z,2) # 0, whilst the differential of the map = + (x) vanishes in the

radial direction. O

Using this proposition, it is easy see that the result of Theorem 5.22 applies
to any integral submanifold of (.#,w), or rather to the extension to a horizontal
submanifold constructed as above, for any choice of A # 2: the Hessian of the
potential F' and its third derivative will define a natural Riemannian metric and
a symmetric cubic form on this extension, and their restrictions to the transverse
leaves coincide (up to some factor depending on the choice of \) with the geometric
structures induced by hg and Zp. Since the proof of the theorem only depended
on certain properties of the potential .# which have straightforward counterparts

for the function F, it is readily extended to this more abstract setting.

165



Chapter 6

Manifolds with holonomy strictly
contained in Go

In this short chapter we study examples of moduli spaces of compact Go-manifolds
with vanishing first Betti number and infinite fundamental group. They correspond
to Go-manifolds whose restricted holonomy (the identity component of the holon-
omy group) is a proper subgroup of G. The material contained in this section
is not elsewhere published, and it is meant to be a complement to the previous
chapter in order to exemplify and give some perspective on our results.

Let (M, ¢) be a Go-manifold with b'(M) = 0 and (M) infinite. As we dis-
cussed in §1.2.3, M has a finite cover m : M’ — M, where M’ is isometric to
the product of a flat torus 7% and a compact simply connected Ricci-flat mani-
fold N7~*. In particular, the identity component of the holonomy group of M is
isomorphic to the holonomy group of N. Since the only proper subgroups of Gs
appearing in the Berger’s list of holonomy groups are {1}, SU(2) and SU(3), there
are only three possible cases. Either M is flat, and is covered by a flat torus T7; or
M has a cover isometric to T3 x X, where T? is a flat 3-torus and X a hyperkihler
K3-surface; or M has a cover isometric to S x Y3, where S! is a circle and Y a
compact simply-connected Calabi-Yau threefold. We seek to describe the moduli
space . of torsion-free Go-structures on M, and to push further the computations
of Chapter 5 by finding an expression for the terms &4 in order to understand
the properties of the metric ¥.

Compared with the case of manifolds with full holonomy Gs, we are in an easier
situation since the deformations the torsion-free Go-structures on M correspond
to a combination of variations of the flat metric on T* and of the variations of
the Ricci-flat metric on N — and of the associated geometric structures — which
are much better understood. Therefore, we may compute the term &4 by lifting

everything to M’ = T* x N via the covering map 7 : M’ — M. That is, let
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(Yz)ze(—1,1) be a family of torsion-free Go-structures on M and (¢, )ze(-1,1) be a

family of torsion-free Ga-structures on M’ such that

* i,
ox

2y,
oz

=0

0o =g, and

=0

Note that we do not assume ¢/, = 7*¢, for all x € (—1,1). Then we have the

following easy consequence of Corollary 5.4:

Lemma 6.1. Let o« € H*(M) be a cohomology class and let o/ = w*a € H*(M').
For x € I, let n(x) be the harmonic representative of a for the metric induced
by ¢., and n'(x) the harmonic representative of o for the metric induced by ¢,.

Then we have:
o

. On
ox i

ox

z=0 =0

6.1 Flat Gyo-manifolds

In this section, we consider the simplest type of compact Go-manifolds M with
b' (M) = 0. Such manifolds are quotients of a flat torus 77 = R"/F by a finite
subgroup F of Gy' fixing no line in R”, and the moduli space of torsion-free
Ga-structures on M can be identified with (A2R%)" (see Remark 1.7). Hence
in those cases understanding the moduli spaces becomes merely an exercise in
linear algebra, and in Appendix A we will give an explicit classification of all the

possibilities.

6.1.1 Geometry of the space of positive forms. In this part, we describe the
geometry of A3 R%, which we can see as an open cone in A’R? or as the homogeneous
space GL(7)/ Go. Either way, it is endowed with a homogeneous metric which
can be described as follows. If ¢ is a positive form and n € T,A3 R} ~ A®R%, then
the squared norm \77|?0 of n as a tangent vector is just the squared norm of n € AR
for the inner product induced by g,. If we write n = h - ¢ where h € End(R")
is orthogonal to the Lie algebra of the stabiliser of ¢, then there are constants

1, C7, co7 > 0 such that

2 = cilmi(h) ]2 + crlmr ()2 + carlmar (R)2

IThe action of F on T7 also contains a translation part if we want the quotient to be smooth, but
by moving to an appropriate finite cover we can arrange that F' be isomorphic to its linearisation
as an abstract group, which we always implicitly assume.
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where |7 (h)|7 denotes the squared norm of the components of h for the inner

5
product induced by g, on End(R"). After some computations, we obtain

C1 = 9, C7 = 2, Cor = 2.

It is interesting to consider the homogeneous fibration ¢ € A3R: — g, € STR%.
The space S2R: ~ GL,(7)/SO(7) of inner products on R” can be given a sym-
metric space structure, where for any g € S3R% and any g-self-dual endomor-
phism h, the norm of h - g € SR} ~ T,STR} is given by ]h]g = tr(h?). This
space is a Riemannian product R x (SL(7)/SO(7)), which corresponds to writing
|h|2 = (tr(h))?/7 + |ho|2 where ho denotes the traceless part of h. If g = g, for
some ¢ € AR we have m;(h) = tr(h)g/7 and ma7(h) = he; in particular the map
g : A°R% — S3R% is a Riemannian fibration for a symmetric metric on S3R% which
is not the standard one, since ¢, cor # 1. If ¢ € A3R%, the vertical space of the
fibration is A?  and the horizontal space is A} A @ A3, .

There is at least another natural homogeneous metric that we can consider
on Af’rR;, which has signature (28,7). Let us fix an element p € ATR?, and let
fu: A2R% — R be the function defined by

to = ful@)p- (6.1)

This function is positive and homogeneous of degree % In fact, if we take any

lattice I', in R” such that [p sr, =1, we see that we have

fulp) = /R7/F Ly = VOI(R7/FW ©).

Thus we deduce from Lemma 4.2 that the function F,, = —3log f, has non-
degenerate Hessian, and if we denote by D the natural flat connection of A3 R% we

have

1

DEm ) = 55 [ (m@E + ra ()l = el

= m M5 + [mar () — Iz ()I5.

Thus (A3R:, D, D*F),) is a pseudo-Hessian manifold. Moreover, D*F), coincides
with the natural homogeneous metric of A3R% on the horizontal space of the
fibration A3 Rs — STIR:.

6.1.2 Positive forms invariant under the action of a finite group. Using
the remarks made in the previous part, we prove the following proposition which
describes (A% R%)" when F' C G is a finite subgroup such that (R7)¥ = 0:
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Proposition 6.2. Let F be a finite subgroup of GL,(7) that fizes no line in RT.
Then the following properties hold:

(i) (A3RH)F is a complete, horizontal and totally geodesic submanifold of A3 Rz

for the natural homogeneous Riemannian structure.
(i) (A3R%)F has finitely many connected components.

(iii) Each connected component is isometric to (STR:)" endowed with the sym-

metric metric for which A3 R; — STR% is a Riemannian fibration.

Proof. To prove (i), assume that (A3R3)" is nonempty and let ¢ be a positive
form that is fixed under the action of G. As F fixes no line in R7, it follows that
(A2 )F ~ (R%)" = 0, and therefore (A’R%)" € AY @ A3; . Thus (A3R;)" is
a horizontal submanifold of A3R%. Hence any n € (A’R:)F can be written as
n = h-¢ where h € End(R") is an F-invariant endomorphism, symmetric for
the inner product g,. For any ¢ € R, the positive form ¢, = (e'")*p is also F-
invariant. Note that ¢, is a horizontal curve in A3R%, and moreover g, = (e'")*g,,
is a geodesic in STR%; thus ¢ is a geodesic in A3R% [100]. This proves that
(A3R:)* is totally geodesic in A3R#, and also a complete Riemannian manifold.

For part (iii), the above argument also shows that T,,(A*R%)¥ can be identified
with the space of F-invariant endomorphisms of R” that are symmetric for the
metric g,, which is also the tangent space of (STR%)¥ at g,. Thus the restriction
of g : A3Rs — SZR: to (A3R:)F induces a local isometry on (STR:)E (for the
symmetric metric on S2R% such that g is a Riemannian fibration). Now (STR%)" is
a symmetric space totally geodesically embedded into SiR;, and the exponential
map at every point is a global diffeomorphism. We proved above that the geodesics
of (S2RR2)* lift to geodesics in (A3R#)F, and thus we deduce that g is surjective,
and moreover the restriction of g to each connected component of (A’R:)F is a
global isometry onto (SZRz)¥.

It remains to prove that (A3R#)¥ has finitely many connected components.
By contradiction, assume that there are infinitely many. Then if g € (S2R%),
there exists a sequence {; }ien of elements of (A% R%)" such that p; # p; for i # j
but g,, = g for all © € N. Any ¢; can be written o] ¢, where a; preserves the
orientation and the inner product g. As SO(n) is compact, up to a subsequence
we can assume that «; converges to an automorphism a., of R7 preserving g
and the orientation of R”, and thus ¢; — ¢ = al o as i — oo in A’R:. As
¢; is F-invariant for all 4 the limit ¢, € (A3R%)*, and moreover by continuity

Jy.. = g. Hence for i large enough, ¢ belongs to the connected component of ¢
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in (A3R5)F, and as g, = g,.. it follows that ¢; = ¢ for i large enough, which

gives a contradiction. O

Remark 6.3. 1t is not difficult to classify all the possible geometries for (S2Rz)F
where F is a finite subgroup of Gy such that (R7)¥" = 0; this is essentially an
exercise about the representation theory of finite subgroups of G,. Out of curiosity,
we carried it out in Appendix A; in most cases we just obtain a flat space, except
for certain representations of the dihedral groups D4, Dg and Dg (see Proposition
A.1 and Proposition A.3).

6.1.3 Moduli spaces of flat Gy-manifolds. Let us now come back to the case
where M = T7/F where (the linearisation of) F is a finite subgroup of Gy. Then
the moduli space .# of torsion-free Go-structures on M can be identified with
(A3R3)F, and under this identification ¢ can be identified with the homogeneous

metric since .

2 2
VOI((p) /M |n|golu<ﬂ = |77|¢

for any ¢ € (A3R:)F and n € (A’R%)F, where we see ¢ as a torsion-free Go-

structure on M and n has a harmonic 3-form. Hence each connected component
of .4 is a symmetric space isometric to (S2R%)¥; in particular, it has nonpositive
sectional curvature.

This easy case is a good sanity check for the results of the previous chapter.
Indeed, from Theorem 5.8 it is easy to see that the terms &,,.q vanish, since the
space of harmonic forms is fixed along families of torsion-free Go-structures induced
by positive forms ¢ € (A3R#)F: the harmonic 3-forms are induced by the constant
alternating forms n € A3R%. Hence the fact that .# is locally symmetric and has
nonpositive sectional curvature can also be seen as a consequence of Theorem 5.22.
This allows us to check the consistency of the results in that case.

Below we give a couple of examples of flat compact Go-manifolds M with
b (M) = 0. We also describe the geometry of the moduli spaces (see Appendix A
for proofs). To describe these examples, it will be convenient to identify R” with
C? @ R and use coordinates (21, 22, 23,0) where z, = x) + 1y, and to consider the

positive form
i 3
¢ = Re(dz A dzy A dzs) + 2 > dz, Adzi A d.
k=1

Ezample 6.4. Let T = R"/Z" and consider the action of Z3 on T generated by the
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isometries «, 3, defined by

Oé(Zl, 22, 23, 9) = (_Zly —Z2,%3, 0 + 1/2)7
ﬂ('zl) 22, 23, 0) = (_Zla Zo + 1/27 —2Z3, 0)7
0(21,2’2,23,9) = (21 + 1/2,22,53 + 1/2, —9)

We can check that any elements in the group acts as a translation on one of the
circle factors, and thus the Z3 acts freely, properly discontinuously on 7. Moreover,
this action preserves ¢, and hence the quotient is a compact Go-manifold M with
bY (M) =0,b*(M) = 0and b*(M) = 7. It turns out that each connected component

of the moduli space is isomorphic to a flat R” (see Appendix A for a proof).

Example 6.5. Again, let T = R7/Z7, and consider the isometries a, o defined as

a(z1, 29, 23,0) = (iz1,129, —23,0 + 1/4),
O'(Zl,ZQ, 23, 6) = <§1,§2,§3 + (1 + Z>/2, —9)

2 =1 and cao =

These isometries preserve ¢ and satisfy the relations a? = o
a~ !, and hence they generate a finite group isomorphic to the dihedral group Ds.
The action of Dg on T is free and properly discontinuous: clearly the subgroup
isomorphic to Cy generated by « acts without fixed points since all the elements act
by translation on the coordinate #, and the elements of D,\C, act by translation
either on the coordinate x3 or on the coordinate y3, so they also have no fixed
points. The resulting compact Go-manifold M = T'/Dg has b*(M) = 0, b*(M) =0
and b*(M) = 6. Each connected component of the moduli space .# is isometric
to R* x H(—1/8), where H(—1/8) is a hyperbolic space with sectional curvature

—1/8 (again, see Appendix A for a proof).

6.2 Manifolds with restricted holonomy SU(2)

When the restricted holonomy group of M is SU(2), that is, if M is a finite quotient
(T3 x K3)/F, it turns out that the Yukawa coupling is also a parallel tensor on
the moduli space .#, and hence the moduli space is locally symmetric and the

period map defined in the previous chapter is a totally geodesic immersion.

6.2.1 From K3 surfaces to compact G;-manifolds. By definition, a K3 sur-
face X is a smooth, compact, connected and simply connected complex surface
with trivial canonical bundle. By a theorem of Siu [107], every K3 surface is Kéh-
ler, and therefore Yau’s solution of the Calabi conjecture implies that K3 surfaces

admit a unique Ricci-flat Ké&hler metric in each Kéahler class [123]. Such a metric
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has holonomy SU(2), and since SU(2) ~ Sp(1) the Ricci-flat Kéhler metrics on
X are hyperkahler. Geometrically, this correspondence between Ricci-flat Kéhler
metrics and hyperkdhler metrics can be realised as follows. Let g be a Ricci-flat
Kéhler metric on X and w € Q%(X) be associated Kéihler form. As the canonical
bundle of X is trivial, H*°(X) ~ C is spanned by a holomorphic volume form

Q € 0?9(X), and after multiplication by an element of C* we can assume that
w? = ;Q A (6.2)
Moreover, considering the type of forms we have the following relations
WwAQ=0=0Q% (6.3)

Thus if we denote w = wy, 2 = wy + tws and p, the volume form associated with
g, relations (6.2) and (6.3) imply that the triple of forms w = (wy,ws, w3) satisfies
;wi ANwj = Oiftg, Vi,j=1,2,3. (6.4)
Moreover, the real 2-forms w; are self-dual with respect to the metric g. Hence w is a
hyperkahler triple, that is, a triple self-dual 2-forms for the metric g satisfying (6.4)
and parallel for the Levi-Civita connection of g. Conversely, given a hyperkéhler
triple w with associated metric g on X, each symplectic form in the triple can
be written w; = ¢g(J;+,-) where J; is an integrable complex structure on X, and
after possibly permuting the indices we may assume that the complex structures
(Ji1, Ja, J3) satisfy quaternionic permutation relations. Then if we denote w = wy,
J = J; and Q = ws + w3, w is a Kahler metric on the complex K3 surface (X, J)
and €2 is a holomorphic volume form. By the work of various authors, it is known
that all K3 surfaces have the same underlying smooth manifold X and the moduli
space of hyperkahler metrics on X can be described by means of the period map
20, 102, 107, 111].

If (M, ) is a compact torsion-free Go-manifold whose universal cover is diffeo-
morphic to R x X, we noted before that there exists a hyperkiler triple w and
a discrete group action I' ~ m (M) — I(R?) x I(X, g,), where I(R?) is the group
of affine isometries of R? for the standard Euclidean inner product and I(X, g,) is
the group of isometries of X with respect to the metric induced by w, such that I"

leaves invariant the Go-form
Pw = d91 VAN d@g VAN d@g - d91 Nwp — d92 N woy — d@g VAN W3 (65)

and (M, ¢) is isometric to (R* x X)/I" endowed with the Gy-structure induced by

¢,. The associated metric reads

9p, = dO; + db; + db; + g,
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As T acts as a product, the 3-forms df; Adb; Adfs and Y df; Aw; are both invariant
under I', and hence I' preserves the orientation on R? and on X. Thus I' can be
identified with a discrete subgroup of I, (R3) x I, (X, g,). Moreover, there is a
normal subgroup I'y of finite index in I' acting trivially on X and as a lattice of
translations on R”. If we denote by F the finite quotient group I'/Ty and T3 =
R?/T, then F acts by isometries preserving ¢, on 7% x X and M ~ (T° x X)/F.

Before describing the moduli spaces in the next part, let us give a few examples.
One idea to construct such compact Go-manifolds is to start with a finite group
F acting freely on a flat torus 7, which preserves the orientation of 7% and such
that there are no nontrivial fixed cohomology class in H'(T?). An example of such

group would be F' = Z32 generated by the isometries «, 3 defined as follows:
a(fy,05,05) = (=01, —05,05 + 1/2),
B(61,602,03) = (=01 +1/2,0,+1/2,—05).
Notice that if we let v = af then
Y(b,02,63) = (61 +1/2,—0, +1/2,—05+1/2)

so that Z2 indeed acts without fixed points on T3.

Given such a group action, we may look for a hyperkahler triple w on X and
an isometric action p of F' onto (X g,), which preserves ¢, for the product action
of F onto 7% x K3. Using the Torelli theorem, it is enough to find a right action
p* of F onto the lattice H?(X;Z), preserving the intersection form, and a triple
of cohomology classes [w1], [ws], [ws] representing the periods of some hyperkéhler
structure and such that > [df;] ® [w;] is preserved by the induced (right) action on
HY(T3) @ H*(X).

Let us describe a few such actions, for ' = Z32 as above. The K3 lat-
tice H*(X;Z) is isomorphic to Eg(—1)? @& H3, and under this identification we
shall write its elements © = (wy, wa, uy, v1, ug, Vo, us, v3), where w; € Fg(—1) and

(u;,v;) € U. In particular, the intersection form reads
rex =w 4+ w:+ 2(uv; + ugvy + usvs)
where w? is the square of w; for the Eg(—1)-quadratic form.

Example 6.6. With the previous notations, let us consider the following action of
73 on H3(X;Z):
* JR—
P () (wr, wa, U, v1, Ug, Vo, Uz, V3) = (—w1, —Wa, —Uy, —V1, —Uz, —V2, U3, V3),

*
P (ﬁ)(wla Ws, U1, V1, U2, V2, U3, Ug) = (_wh —W2, —U1, —V1, U2, V2, —U3, _U3>7
*
P (n)(

(”Y) w1,w2,u1,v1,uz,v2,u3yv3) = (w1,w27u1>U17 —U2, —V2, —U3, —03)-
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This action clearly preserves the intersection form. The elements [df;] ® z; €
HY(T?) ® H*(X) invariant under the action of Z3 are exactly of the form

T = (wlanau17v17070aO)0)7
Ty = (0,0,0,0,’&2,7)2,0,0),
T3 — (0,0,0,0,0,0,’&3,1)3).

In particular xq, x5, x3 are always orthogonal. Moreover x = (1, %2, x3) span a

positive 3-plane in H?(X) if and only if
2uiv9 + wf + wg >0, ugvy >0, wugvs > 0.

Let us prove that there are hyperkéhler structures on X whose periods satisfy these
conditions. Tt boils down to finding an orthogonal set of classes 1, T2, 3 € H*(X)
satisfying the above conditions and such that the vector space they span in H?(X)
is not orthogonal to any root of the lattice H?(X;Z). For instance, this condition
holds if u;, v; as well as the coefficients of w; and ws in an integral basis of Fg(—1)
are all linearly independent over QQ, since for any root ¢ the orthogonality conditions
0 e x; = 0 can be expressed as a set of Q-linear equations.

Hence the quotient (T2 x X)/Z3 is a compact Go-manifold with b'(M) =
b*(M) = 0, and we can easily compute that b*>(M) =1+ 18 + 2 + 2 = 23.

Ezxample 6.7. Replace p* with

p*(a>(w17 wa, U1, V1, U2, V2, U3, /03) = (w27 wy, —U1, —V1, —Uz, —V2, U3, /03)7
p*(ﬁ>(w17 Wa, U1, V1, U2, V2, U3, ,03) = (w27 w1, —U1r, —Vq1, U, V2, —Ug3, _,03)7

P (V) (Wi, wa, ur, v1, Uz, V2, Uz, U3) = (Wi, Wa, Ur, V1, —Us, —Va, —Us, —Vs3).
This time the admissible classes [df;] ® z; € H(T?) ® H*(X) have

Xy = (U), —U},Ul,’Ul,0,0,0,0),
To = (0707070707u27v2707 0)7
xr3 = (07070707070716371}3)'

and

2w? + ugvy >0, uguy >0 and usvs > 0.

Again, if we assume that the coefficients of w, u;, v; in an integral basis of H?(X; Z)
are rationally independent, then (after normalisation if necessary) xy, z2, x5 will be
represent the periods of a hyperkédhler structure. Indeed if § is a root orthogonal

to such x4, 22, 3, then we may deduce first that 6 € Eg(—1)® Es(—1), and second
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that 6 = (w',w,0,...,0) for some w’ € FEg(—1). But since the lattice Eg(—1) is
even, the norm of (w',w’) is divisible by 4, and we obtain a contradiction with the
fact that 6% = —2.

This time, the quotient would be a compact Go-manifold with b'(M) = 0,
b*(M) =8 and b3(M) = 15.

Ezxample 6.8. For a more explicit description, we can for instance use the example
of Z3 action on a K3 surface X given in [68, Ex. 7.2]. Here the K3 surface is
constructed as a double cover of CIP? branched over the sextic curve C' = {[z; : 2 :
23|28 + 2§ + 2§ = 0}. The Z2 action is generated by the involution swapping the
sheets of the double cover and the lift of the anti-holomorphic involution [z : 25 :
23] V> [Z1, Za, Z3]. The resulting manifold M = (T3 x X)/Z3 has b*(M) = 0*(M) =
0 and b3(M) = 23.

6.2.2 Structure theorem for the moduli spaces. Let us describe the defor-
mations of (M, ¢). First, we need to start with the deformations of (7% x X, ¢,).

The space of harmonic 3-forms on 7% x X decomposes as:
AP(T° x X, p,) = MRS @ (R @ A, (X)) @ (R @ A, (X))

where (X)) are the spaces of harmonic (anti-)self-dual 2-forms on (X, w) and R}
is the dual space of R3. Using this decomposition, we can describe the deformations

of ¢, by analysing separately each component.

o The first component A’R} is spanned by df; A dfy A dfs. Deforming of ¢,
along this direction corresponds to rescaling the inner product on 7% by some
factor A > 0, together with a rescaling of the hyperkahler triple w by a factor
A3,

« R{®7,7(X) has dimension 9 and contains 7*(T%x X, ¢,) as a 3-dimensional
subspace spanned by fglc_n@(gog) = df; N w; — db; N\ w; for cyclic permuta-
tions (ijk) of {1,2,3}, corresponding to the isometric deformations of the
Go-structure ¢,. Its orthogonal complement has dimension 6, and decom-
poses as the direct sum of the 5-dimensional space {3 a;;d0; A wj,a;; =
aji, > a; = 0} corresponding to the infinitesimal deformations of the inner
product on T° with fixed volume element, and a 1-dimensional space spanned
by df, A wy + dfy A\ ws + dfs A ws corresponding to an infinitesimal rescaling
of the hyperkahler triple.
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o The third component R} @ 2, (X) corresponds to the deformations of the
hyperkahler metric g, on X with fixed volume, where the inner product on

R3 is fixed.

Remark that F' preserves this decomposition, since F' can be identified with a finite
subgroup of I, (T?) x I, (X, g,). Hence the quotient map 7% x X — M induces an
identification of 3(M, ) ~ H#3(T? x X, p,)", and we obtain a decomposition:

M) = VR0 (B30 #5 (X)) o (R (X)) . (66)

Note that as ¢, is fixed by I', df; A df; A dfs must also be fixed by I'. This
decomposition induces a splitting T.# = T°.# & T # © T~ .4 of the tangent
bundle of .#. Using this splitting and Theorem 5.8, we can prove:

Proposition 6.9. Let (M, ) be a compact Go-manifold with b'(M) = 0 whose
universal cover is R® x K3. Then the Yukawa coupling on .# is parallel for the

Levi-Civita connection of 4, and in particular (A ,9) is locally symmetric.

Proof. Let us choose affine coordinates (z°,...,2") near ¢ in .# and prove that
the extra term & peq+Erapat+Ervaq in Theorem 5.8 vanishes. Let us writen = n+n_
where n4 is the dimension of (R;&p%ﬂi()())ﬂ Up to a linear change of coordinates,
we can assume that we chose coordinates adapted to the decomposition (6.6), in

the sense that the harmonic representative of % € H3(M) for the metric g, lies

in A’Rj, the harmonic representatives of 3;2;,..., 5%+ lie in (R} ® Ao (X NE,
and the harmonic representatives of #, cee axin lie in (R} ® %@; (X))F. Note

that this can only be imposed at the point ¢ € .#, not locally near this point.
Throughout the proof our computations will be local (in M), and therefore we can
lift everything to T2 x X, where the variations of the space of harmonic forms are
easier to understand (using the result of Lemma 6.1).

First we prove that if one of the indices a, b, c or d is between 0 and n then
Ewea(p?) = 0, and similarly for &..pq and Eupeq. Since Fypeq is fully symmetric
in its indices, we may assume that 0 < d < n,, and seek to prove that hy - n
is harmonic for any n € J#3(M,p). As a consequence of our discussion of the
deformations of ¢, on T% x X, there is a deformation {0w, Fte(—ee) of 0, o0 T3x X
which consists in a variation of the inner product on 7° combined with a rotation

Zer| _is the Lift of

nq. In particular the space of harmonic forms on 7% x X with respect to Yoo, 18

and a dilation of the hyperkahler triple on X, and such that

fixed along this deformation of ¢,,. Hence Lemma 5.7 implies that the lift of hg -7
to T x X is harmonic whenever 7 is a harmonic form on M, and thus hg - 7 is

harmonic on M. Hence &peq(92) = Svapa(9 D) = Ewpaa(9Z) = 0.
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Now let us assume that ny +1 < a,b,c,d < n. In this case, it is no longer
true that hg - 7. is harmonic, but we want to prove that the contribution to &4
of its exact part cancels with the contribution of the co-exact part. This time, our

discussion of the deformations of torsion-free Gy-structures on 7% x X implies that
Opw,
t

there is a deformation {,, }ic(—e) Of ¢, such that o N, is the lift of 7y

and ,, can be written

3
@ﬂt = d91 N d@g A d(93 — Z d9] A Wit
j=1
where w;, = (w14, wat,ws¢) is a family of hyperkéhler triples on X. Now let n €
H°(M, ), representing a vector in T, .#. Its lift 7 = 7*n on T? x X can be
written
ﬁzd@l/\a1+d02/\a2+d93/\a3

where aq, ag, a3 are anti-self-dual harmonic 2-forms on X, g,. In particular the

dual 4-form of 7, which we denote by ¥ = %, 7 = 7 (%,n) is
V= —d92/\d93/\041—d@g,/\d@l/\ag—dﬁl/\deg/\ozg,.

If we now denote by 77; the harmonic representative of [1] = 7*[n] € H3(T? x X) for
the metric gy, and 7 the harmonic representative of [V] = 7*[x,n] € H*(T* x X)),

we see that

ﬁt == d91 VAN al,t + dgg A Oégi + d93 VAN 043715,
’715 = —d@g A d03 VAN Q14 — d@g A d91 N Qg — d91 VAN d@g AN s ¢

where «;, is the harmonic representative of [a;] € H?(X) for the hyperkéhler
metric associated with w,. In particular, the lift of the exact part of 2(hg - ) to
T3 x X is

Oar

=dbf; A ’
o ot

o
ot

9y

ot

+dfy A 23

dfs N
+ abs o It

t=0

t=0
and the lift of its co-exact part is
oy
ot

da 4 gt
’ —dO; N db ’
ot 1 Adbz A

Qg ¢
—df; N\ db; N —
3 ! t=0 ot

= —df, N db
2 A\ abls A\ ot

t=0

t=0

t=0
If we now let n = 7. and describe in a similar way the exact and co-exact parts
of hy - mp, we see that the inner product of the exact parts of hy - 1. and h, - n
is equal to the inner product of their co-exact parts, and thus &peq(9Z) = 0 (see
Remark 5.9). Similarly &..pq(¢Z) = Swaa(9Z) = 0, which completes the proof of
the proposition. O
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Similarly to the case of T7/F, one may prove in a more direct way that the
moduli space of torsion-free Go-structures on (7% x X)/F is a locally symmetric
space with nonpositive sectional curvature, using the period map for hyperkéhler
surfaces. For lack of space we will not justify everything in detail but we want to
outline the idea.

The basic observation is that the moduli space of torsion-free Go-structures on
T3 x X can be seen as an open subspace of a homogeneous space. To introduce it,
let use denote by Hom (R3, H?(X)) the space of linear maps R®> — H?*(X) whose
image is a positive 3-plane in H?(X) ~ R*>!" and £, = A3R;xHom (R?, H*(X)).
The idea behind this is that if we look at (6.5), ¢, should be identified with
(dOy Ndby NdBs, Y dO; @ [w;]) € EL. E is a homogeneous space under the action of
GL4(3) xSO¢(3,19), and there is a homogeneous fibration to the symmetric space
(GLL(3)/50(3))x(S0¢(3,19)/SO(3)x SO(19)). Geometrically, the interpretation
of this fibration is clear: the first factor parametrises the flat metric on 7%, and
the second factor is the Grassmannian of positive 3-planes in R3Y ~ H?(X),
corresponding to the period of the hyperkahler metric g,.

It is not very difficult to prove that, under the identification of the moduli space
of torsion-free Ga-structures on 7% x X with an open subset of E,, the metric
G, is isometric to a homogeneous metric on F,; and that there is a symmetric
metric on STRj x Gry (3, R*") which makes the map E, — STRj x G4(3,R*!)
a homogeneous fibration. Now if F' is a finite group of isometries of 7% x X such
that the quotient (7 x X)!" = M has b'(M) = 0 (that is, if F acts without fixing
a non-zero vector in R?), the moduli space .Z of torsion-free Go-structures on M
will be identified with an open subset of EX. The point is that EZ is a horizontal
submanifold of E,, and hence each connected component of the moduli space is
isometric to an open subset of (S2Rj x Gr (3, R*'?))F which is totally geodesic
inside STRj x Gry (3, R*1?). We therefore recover the fact that .# is in this case

a locally symmetric space of nonpositive sectional curvature.

6.3 Manifolds with restricted holonomy SU(3)

The case of (S xCY3)/F was less conclusive and we could not find formulas with a
clear geometrical interpretation, so we will just make a few very basic observations.
Not that in this case we must have F' = Z, since (up to a translation) the only

nontrivial isometry of the S* factor acts by the antipodal map, that is 6 — —0.
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6.3.1 Calabi—Yau threefolds. Let Y% be a compact simply connected manifold,
with a torsion-free SU(3)-structure (J,w, §2). Recall that the almost complex struc-
ture J is integrable and the metric g, = w(-, J-) is Kéhler, Ricci-flat, and 2 is a

holomorphic volume form. Moreover, there is an induced torsion-free Go-structure
© =df ANQ+ Re(Q2)
on S' x Y. The space of harmonic 3-forms on S! x Y decomposes as:
AP(S' XY, ) =do N (Y, g.,) ® AP, g.)
where we have further splittings:

AV, g.) = R ® (Y, g.),
A3(Y,g,) =RRe Q@ RImQ & 4>V (Y, g,)

where %I’I)O(Y, gw) is the space of harmonic real primitive (1, 1)-forms and simi-
larly 72>V (Y, g,)) is the space of real harmonic forms of type (2,1) + (1,2). This
decomposition of the space of harmonic 3-forms on S! x Y has the following in-

terpretation in terms of deformations of the product Gy-structure:

o Deformations along the space Rdf A w & RRe) & RIm ) correspond to a
variation of the length of the circle factor, or a rescaling and rotation of
the holomorphic volume form. Hence this space corresponds to infinitesi-
mal deformations of the Go-metric by a mere rescaling of each factor of the

Riemannian product, which does not affect the space of harmonic forms.

o Deformations along d@/\f%fR(l’l)o (Y, g.,) correspond to a variation of the Kéahler
class, with fixed complex structure J on Y. The space of harmonic forms
varies along such deformations, but not the Hodge decomposition of the

cohomology in classes of type (p, q).

 Deformations along c%fR(Q’l)(Y, g.) correspond to changes of the real part of
the holomorphic volume form orthogonal to those changes corresponding to
multiplying €2 by a complex scalar. This amounts to deforming the complex
structure of Y with fixed Kéhler class (see for instance [60]). Such deforma-
tions modify both the space of harmonic forms and the Hodge decomposition

into classes of type (p, q) of the cohomology of Y.
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6.3.2 Some remarks on the moduli spaces. Let us now consider a Gy-manifold
(M, ) with vanishing first Betti number and restricted holonomy SU(3). Then
there exists a simply-connected Calabi—Yau threefold (Y, J,w, ) such that M has
a double cover m : M — S' x Y, where the Gy-structure 7*¢ is a product as
described above. Moreover, M ~ (S! x Y')/Z,, where without loss of generality
we can assume that Z, acts by § € R/LZ — —0 € R/LZ on the S' factor and
by an isometry ¢ on Y. For Zy to preserve ¢, we therefore need c*w = —w and
o*Re(2) = Re(2). Thus o must be a anti-holomorphic isometry of Y (and in
particular ¢*Im(Q2) = —Im(Q2)); moreover, it needs to be without fixed points
for the quotient M = (S' X Y)/Zy to be a smooth manifold. Conversely, if ¥ is
a simply connected compact Calabi-Yau threefold and o a fixed-point-free anti-
holomorphic involution, then for any Kéhler Ricci-flat 2-form w the 2-form —o*w
is Kahler Ricci-flat, and thus the cohomology class [w] — o*[w] € H*(Y) is Kéhler
and therefore must contain a Kéhler Ricci-flat metric w’ with o*w’ = —w’. Before

proceeding further, let us give an example of a suitable pair (Y, o).

Example 6.10. By the adjunction formula and the Lefschetz Hyperplane Theorem,
we can construct simply connected Calabi—Yau threefolds by intersecting trans-
versely a smooth quadric and a smooth quartic in CIP®.

Let us consider the two hypersurfaces Vi, Vo C CP® defined as V) = {[z1 : -+ - :

26)| 222 = 0} and Vo = {[z1 : -+ : z)| Xi 2} = 0}. These hypersurfaces are
smooth, and their intersection is transverse. To see this, define fi.(z) = 3, 22

for 2 = (21,...,2) € C® and let z # 0 such that fi(z) = fo(z) = 0. We want
to prove that kerd, f; @ kerd,f, = C®. By contradiction, if this is not the case
then (zy,...,2) must be colinear to (25,...,23) in C° Since these vectors are
non-trivial, there exists A # 0 such that for any 0 < i < 6, either z? = 0 or 27 = \.
But since fi(z) = 0 it follows that d\ = 0, where d is the number of indices such
that z; # 0, whence either d = 0 or A = 0, contradicting our assumptions.

Let Y C CP° be the intersection Vi N Va: this is a simply connected Calabi—
Yau threefold. Moreover, it is endowed with an involution ¢ induced by complex
conjugation of the homogeneous complex coordinates of CPP°. Since the real locus

of Y is empty, this involution has no fixed points. Hence (Y, o) is a suitable pair.

Assuming that these conditions are satisfied, the space of harmonic 3-forms
H3(M, ) is isomorphic to S3(ST x Y, m*)%2, and we deduce the following de-

composition of the space of harmonic 3-forms on M:

(M, ) ~RdO Aw @ RReQ @ di A (Y, g,) @ 70 (Y, )’

180



where %2’1)(3/, 9w)’ C %?R(Q’l)(Y, gw) is the subspace fixed by ¢ and and the sub-
space L%fR(};l)O(Y, gw) C L%,?IS’UO(Y, gw) is the —1 eigenspace of o.

We can consider affine coordinates (z%) on a neighbourhood of 9% in the moduli
space . of torsion-free Go-structures on M, and denote by zy the coordinates
of p&. Although we could not give a fully explicit computation of the fourth
derivative of .%, we can easily see that for certain choices of indices the terms

VfEabC will automatically vanish:

Lemma 6.11. Let 0 < a,b,c,d < n be indices and assume that either one of the

following conditions is satisfied:

(i) At least one of the indices corresponds to a direction of deformation which
lies in RdO N w ® RRe(2, or

(7i) Not all indices correspond to directions of deformations lying in the same
space df N 4%%(’1_,1)00/’ gw) or APV(Y, g.)°.

Then éaabcd + gcabd + éacbad =0 at v = x9.

Proof. If condition (i) is satisfied, then the result is immediate since one of the
indices corresponds to deforming 7*p in a direction which does not modify the
space of harmonic forms. For condition (ii), there are only two cases to consider:
either three of the indices correspond to deformations lying in one of the spaces
do N %%71_’1)0(3/, gw) Or f%ﬁézl)(Y, 9.)? and the other index corresponds to a direc-
tion of deformation lying in the other space, or two of the indices correspond to
deformations lying in df A t%fkf’l_’l)O(Y, g.)? and two of the indices correspond to de-
formations lying in ,%%(2’1)(}/, 9.)7- A close examination of the expression of &,p.q
in terms of inner products of variations of harmonic forms shows that in all cases,
we can find a permutation of the indices a, b, ¢, d such that &,pcq, Erapa and Eopaq
are computed by taking the L2-inner product of a 3-form of the type df A k, where
k € Q2(Y), with a 3-form of the type p € Q3(Y). Such inner products vanish,
which yields the lemma. O
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Appendix A

Finite subgroups of G9

In Chapter 6, we have shown that when F' is a finite subgroup of G fixing no

line in R”, each connected component of (A3 R%)" is a symmetric space. In this

appendix we want to classify the possible geometries. There is a classification of

the conjugacy classes of finite subgroups of Gy [26, 48]; however, we will not need

the details of the full classification. As each connected component of (A3R:)F is

isometric (up to a factor of 2) to (S2R%)F, it is enough to understand the geometry
of the latter space. Moreover, if ' C O(n) the description of (S2R*)* is deter-

mined by the decomposition of R” as a direct sum of irreducible representations

of F,

(i)

(iii)

due to the following consequences of Schur’s lemma:

Assume that there is an orthogonal decomposition R" = W; @& Wy, where
W1, Wy are subrepresentations of F', such that W; and W5 contain no com-
mon irreducible subrepresentations. Then (S3R?)* is isometric to the prod-
uct (S2WHE x (S2W5)F.

Assume that there is an orthogonal decomposition R” = Wy & - - - & W, such
that for ¢ # j the representations W; and W; are non-isomorphic irreducible
representations of F'. Then (SiR;’;)F is isometric to R™ equipped with a

Euclidean metric.

Assume that n = dk and that there is an orthogonal decomposition R" =
Vi @ -+ ® Vi, where all the V; are isomorphic irreducible representations
of dimension d, and there is (up to multiplication by a scalar) a unique
isomorphism between any two of them. Then (S2R;)F is isometric to R x
d - SL(k)/SO(k) (i.e. the standard symmetric metric of SL(k)/SO(k) is
multiplied by a factor d).

To classify the finite subgroups of G, fixing no line in R7, it will be convenient

to adopt various points of view on positive forms. A first viewpoint, which is
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well-adapted when a group leaves invariant a line in R7, is to write R” = C3 @ R,
with linear coordinates (21, 22, 23,6), where z; = x; + iy;. In this decomposition,

we can take the canonical positive form to be

-3
o = Re(dzy A dzs A dzs) + % S dz; A dz; A do (A.1)

j=1

In particular, any linear transformation which leaves invariant ¢ and the decom-
position R” = C3 @ R is either an element of SU(3) (if it fixes the #-line) or the
composition of an element of SU(3) and the real endomorphism acting by complex
conjugation on C* and by multiplication by —1 on the #-line.

Another point of view, which is useful when we consider a subgroup of Gs
leaving invariant a coassociative subspace in R”, is to write R” = R* ® A2, where
A% is the space of self-dual 2-forms for the standard orientation and inner product
of R*. Any linear transformation fixing ¢ and leaving the decomposition R” =
R* @ A? invariant can be identified with an element of SO(4), acting with the
natural representation on R* and with the induced representation on A%. In
particular, any subgroup of G, leaving invariant a coassociative subspace can be
identified with a subgroup of SO(4), and its action on R is determined by its
action on the coassociative subspace.

We first prove that there is, up to conjugacy, only one abelian subgroup of G,

fixing no line in R7:

Proposition A.1. Let F C Gy be an abelian subgroup such that (R")¥ = 0. Then,

up to conjugation in Go, F ~ 73 is generated by o, 3,0 acting by

a<Z17227 2379) = (_Zh _Z27Z376)7
6(217’2272379) = <_217227 —23,6),

U(Zlv 225 235 6) - (zla 22, 23, _9)
Hence (S2R:)E is isometric to a flat R”.

Proof. Since F is abelian and any orthogonal transformation in R” has a non-trivial
eigenvector, the elements of F' have a common eigenvector. Up to conjugacy, we
can write R7 = C3® @ R with coordinates (z1, 29, 23,0), and assume that F' leaves
invariant the #-line. Let Fyy <t F' be the subgroup of index 2 fixing this line. Then
Fjy can be identified with an abelian subgroup of SU(3), and hence up to conjugacy
in SU(3) we can assume that there are homomorphisms (1, (2, (3 : Fy — U, where
U is the group complex numbers with unit modulus, such that (;(>(5 = 1 and any
a € Fy acts by

(21, 22, 23,0) = (Cia)z1, Ga(a) 2o, (3() 23, 0).
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Let 0 € F\Fy; since Fy has index 2 in F', the group F' is generated by Fy and o.

There exists a matrix A = (a;j)1<; j<3 in SU(3) such that

o(z1, 22, 23,0) = (Z 1524, Z 2%, Z 3525, —0).

1

As F is abelian, aca™ = o for any « € Fy, which is equivalent to the condition

Ci(a)Cj(a>aij = CLij, Vl S Z,] S 3. (AQ)

Let us prove that A must be a diagonal matrix. By contradiction, assume that this
is not the case, so that after an appropriate cyclic permutation of 2y, 25, 23 we can
assume a2 # 0. Then condition (A.2) imposes (12 = 1, and as (1(2(3 = 1 we have
(3 = 1. Since F fixes no line in R7, one of the coefficients a3, a1, ass, azo must be
nonzero; otherwise Fy fixes the z3-plane and o acts as a reflection on this plane
so F' would fix a line in the z3-plane. By (A.2), we deduce that (; = G = =1
so that F' = Z, is generated by o. But o is a rotation in R” and therefore fixes a
line, and we have a contradiction.

Hence A is a diagonal matrix in SU(3). Let A;.A2, A3 € U be its eigenvalues;
in particular A;A2A3 = 1. Thus there is a choice of square roots )\]1»/ % such that

)\i/ 2)\5/ 2)\:1/ > = 1. Hence the linear change of coordinates

(21, 22, 23, 9) — (/\1/221, )é/QZm /\:1;/223, 9)

is in Gg, and in these coordinates o acts as
U(Zla 22, 23, 0) = (zlvz%z?n _0)

Now condition (A.2) implies that ¢? = 1 for all i, and together with the fact that
(1(¢3 = 1 and the fact that F fixes no line in R?, we deduce that Fy ~ Z2 is
generated by «, 8 acting as

Oé(Zl, 22, %3, 9) - <_Zl> —Z2, %3, 6)7

6(217 22,23, 9) = (_Zlv 22, TRZ3, 6)

Thus F ~ Z3 is generated by «, 3,0. In particular, R” decomposes as the direct
orthogonal sum of 7 irreducible representations of dimension 1, and it is easy to
see that they are all non-isomorphic. Thus (S2R*7)" is the maximal flat totally
geodesic submanifold of S3 R formed by the inner products that are diagonalisable

in this decomposition. O
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Next we classify the possible types of decomposition of R” into irreducible
representations for the action of a finite nonabelian subgroup of Gs. If we identify
R” with the imaginary part of the space of octonions, then a positive form is
essentially dual to the cross-product. In particular, if W is a subrepresentation
of I’ then the space generated by the cross products of elements of W is also F-
invariant. Thus if R” contains a subrepresentation W of F' of dimension 2, then
the line generated by the cross-product of the elements of a basis of W is also
invariant under F'. The only possibilities compatible with these constraints are

the following:

Proposition A.2. Let F' be a finite nonabelian subgroup of Go fixing no line in
R”. Denote by Ly, Lo, . .. the non-isomorphic 1-dimensional representations of F,
by P, P, ..., the 2-dimensional non-isomorphic irreducible representations of F,
and by VE VE ... the (k > 3)-dimensional irreducible representations. Then the

orthogonal decomposition of R” into irreducible subrepresentations is either one of:
1. RT=V/.
2. R"=VSa® L.
3. R =V V3.
4 RT=VoP oL.
5 Ri=V®L &L @ Ls.
6. RT=V2e Vi L.
7RI =P&POL L@ Ls.
8 Rl=P®OP®L®Ly® Ls.
9 RT=POP,®P® L.
10 R"=P &P, &P, ® L.
11. R"=PaP®P&L.

Moreover, in cases 8, 10 and 11 the only automorphisms of the representation P,

are (real) homotheties.
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Proof. 1f there is a subrepresentation W of dimension 5, then its orthogonal space
W+ is an invariant subspace of dimension 2, and looking at the cross-product W
must contain a subrepresentation of dimension 1. Hence R has no irreducible
subrepresentation of dimension 5. Moreover, any two one-dimensional subrepre-
sentations must be non-isomorphic, otherwise the cross-product would yield a fixed
line in R”. Therefore, cases 1 to 5 enumerate the possibilities when there is an
irreducible subrepresentation of dimension at least 4. Since we assumed F' to be
nonabelian, R” cannot be direct sum of representations of dimension 1, and thus
the cases left are when the dimension of the largest irreducible subrepresentation
is 2 or 3.

Suppose it is 3. If there is a subrepresentation of dimension 2, then there must
be one of dimension 1 as well by cross-product. For the same reason, if there are
two one-dimensional subrepresentations then there must be at least a third one.
Finally, if there are two 3-dimensional irreducible subrepresentations they cannot
be isomorphic for determinant reasons. Hence the possibilities are case 6 in the list
and R"=V2® L, ® Ly ® L3 ® Ly. We want to rule out the second possibility. In
this case, we can assume after changes the indices that V* @ L; is a coassociative
space; thus we can write R" = V> @ L; & A% (V? @ Ly)*. We want to prove that
F acts irreducibly on A% (V{® & Ly), thus reaching a contradiction. Let us take
linear coordinates x; on Ly and (yy, x2,%2) on V2. Then there is a homomorphism
A:F — O(3) such F acts by A on V2 ~ R3 and by det A on L; ~ R. Using the
linear coordinates (61,602, 05) on A% (V® @ L)* associated with its standard basis,
we see that F acts on A% (V? @ L)* by det(A) - A, which is an irreducible action.
Hence only case 6 can occur.

Now suppose all the irreducible subrepresentations of F' contained in R” have
dimension 1 or 2, and that at least one has dimension 2. Then, besides cases 7-8,
there is the possibility that R” decomposes as P, @ L1 @ Lo ® Ly © Ly ® Ls. But
after changing the indices, we could assume that P; & L, is associative, and hence
its orthogonal R & R & R & R would be coassociative. As F' is determined by its
action on the coassociative subspace, this would force F' to be abelian, so in fact
this case cannot occur.

It remains to prove our claim about the automorphisms of P; in cases 8, 10 and
11. In each of these cases, the direct sum of two copies of P; @ P, is a coassociative
subspace of R, and hence F can be identified with a finite subgroup of O(2) acting
in the same way on each component P; ~ R2. Since we assumed that F is not
abelian it must contain a reflection, and therefore F' is isometric to a dihedral

group Ds, for some n > 2. Now the claim follows from the fact that the only
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automorphisms of the natural representation of the dihedral group Ds, on R? are

precisely the real homotheties. O
We now give examples and more details on each case in the list:

Cases 1-5: In cases 1 to 5, no two irreducible subrepresentations are isomorphic
and thus (S2R2)¥ is isometric to R™, where m is the number of irreducible sub-
representations. All of these cases do occur for some finite subgroup of Gy. For
case 1, there are finite subgroups of G, acting irreducibly on R”; for instance there
is one of order 168 which is isomorphic to PSL(2,7) [26, 48]. The second case
can be realised by taking a group of the form F' = GG x Z,, generated by a finite
subgroup of SU(3) acting irreducibly on C? and the real automorphism of complex
conjugation (at least for a good choice of G; but a finite group of SO(3) acting
irreducibly on R3, seen as a subgroup of SU(3), would do the trick with F' = G x Z,
in that case).

It remains to see that cases 3, 4 and 5 can occur as well. Thus we seek a
finite subgroup of SO(4), acting irreducibly on R*, such that the induced action
on A% is either irreducible (for case 3), or has one irreducible subrepresentation
of dimension 2 (for case 4), or has three one-dimensional subrepresentations of
dimension 1 (for case 5). It is more convenient to consider the double cover Spin(4)
of SO(4), which is isomorphic to SU(2)_ x SU(2);, where SU(2)_ fixes A% and
SU(2); acts on A% in a way that realises the double cover of SO(3). Now take
any finite subgroup G_ of SU(2)_ acting irreducibly on R* (for instance the group
of order 8 generated by i, j, k seen as unit quaternions), and G, a finite subgroup
of SU(2);. Then let G- x G4 C Spin(4) and let F be its image in SO(4); it acts
irreducibly on R* since G_ does, and its action on A% is determined by the choice
of G,. For case 3, one can take G, to be the lift in SU(2) of a finite group of
SO(3) acting irreducibly on R3. Up to conjugacy, there are three such groups: the
chiro-tetrahedral, chiro-octahedral and chiro-icosahedral groups [28], respectively
corresponding to the group of rotations leaving invariant a regular tetrahedron, a
regular octahedron or a regular icosahedron in R3. For case 4, we can take G to
be the lift in SU(2) of a dihedral group Ds,, for some n > 3, and for case 5 we can
choose G as the lift in SU(2) of the dihedral group D, ~ Z2.

Case 6: Let us assume that V3 @ L, is coassociative. In the proof of the previous
proposition, we have seen that there is a homomorphism A : F' — O(3) such that
F acts by A on V* ~ R3 by det(A) on the invariant line and by det(A) - A on
V3 ~ R3. Hence (S2R%)F is isometric to a flat R®, and F' can be identified with a

subgroup of O(3) acting irreducible on R? without preserving the orientation. As
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in the case of the finite subgroups of SO(3), there are (up to conjugacy) three such
groups: the holo-tetrahedral, holo-octahedral and holo-icosahedral groups. They
respectively correspond to the full group of orthogonal transformations leaving
invariant a regular tetrahedron, a regular octahedron or a regular icosahedron
[28].

Cases 7-8: The case where the two 2-dimensional irreducible subrepresentations
are non-isomorphic occurs for instance when considering the action of the dihedral

group Dy,, for some n > 3, acting on R” = C? @ R by two generators «, 3:

Oé(zla 22, 23, 0) = (6%217 _67%227 —Z3, 9)7

O'(Zl, 29, %3, 9) = (21,2223, —9>

In case 7, (S2R%) is isometric to a flat R5.
When the two 2-dimensional representations are isomorphic, we have seen that

F' is isometric to a dihedral group and that the only automorphisms of P; are

homotheties. Thus we deduce that (S2R2)¥ is isometric to R* x 2+ (SL(2)/ O(2)) ~

R* x H(—1/4), where the metric on the hyperbolic plane H is normalised to have

constant sectional curvature —1/4. It is easy to see that up to conjugacy the only

possibility is Dg, generated by «, o acting on R” in the following way:
a(z1, 29, 23,0) = (121,129, —23,0), (A3)
o(z1, 22, 23,0) = (21,22, Z3, —0).

Cases 9—11: If all the 2-dimensional representations are mutually non-isomorphic,

then (STR%)" is isometric to a flat R*. For any pair of integers ny,ny > 3, an

example of such action for a finite group is (C,, x C,,,) X Zs, generated by three

elements «, 3,7 acting by:

2im _2im
Oé(zlwz% 2379) = (6 "l Z1,%2,€ ™M Z370)7
2im _ 2im

6(217227237‘9) = <21,€E22,€ 722379)7

O'(Zl, 29,23, 0) = <§1,§2,§3, —9)

Another possibility is when exactly two representations of dimension 2 are
isomorphic, in which case (S3R%)* is isometric to R?* x 2- (SL(2)/SO(2)) ~ R? x
H(—1/4). One can easily see that, up to conjugacy, the only possibility is F' ~ Ds,,
where n > 5, acting with two generators a, o as

2im 2im _ din
a(z1, 29, 23,0) = (e ;ﬂzl,e ’l’bﬂZQ,e Zng,e), (A4)

O'(Zl, 29,23, 0) = (21722753, —9)
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The last possibility is when all of the dimension 2 subrepresentations are iso-
morphic. In that case, (STR3)¥ is isometric to R? x 2 - (SL(3)/SO(3)). Up to
conjugacy in Go, the only possibility for a finite group is Dy acting with two
generators «, o as

a(z1, 29, 23,0) = (e ?2176 ?22,6 5ﬂ23,«9), (A5)

0-(217 22, 23, 0) = (217 22,23, _6)
Gathering the previous results we finally obtain:

Proposition A.3. Let F' be a finite nonabelian subgroup of Go fixing no line in

R”. Then (SZR:)Y is isometric to one of the following:
1. A flat R™, where m =1,2,3,4 or 5.

2. R3 x H(—1/4), in which case F ~ D, for some integer n > 5, and up to

conjugacy F has two generators a, o acting as (A.4).

3. R* x H(—1/4), in which case F ~ Dg, and up to conjugacy F has two

generators a, o acting as (A.3).

4. R* x 2 (SL(3)/SO(3)), in which case F ~ Dg, and up to conjugacy F has

two generators o, o acting as (A.5).
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